Background Story of the Invention of Efficient Blue InGaN Light Emitting Diodes

SHUJI NAKAMURA

SOLID STATE LIGHTING AND ENERGY ELECTRONICS CENTER
MATERIALS AND ECE DEPARTMENTS
UNIVERSITY OF CALIFORNIA, SANTA BARBARA,

2014 NOBEL LECTURE IN PHYSICS
1) **Introduction**: What is an LED?

2) **Material of Choice**: ZnSe vs. GaN

3) **The Beginning**: GaN on Sapphire

4) **Enabling the LED**: InGaN

5) **Historical Perspective**
The LED
ENERGY EFFICIENT WHITE LIGHT
A Light Emitting Diode (LED) produces light of a single color by combining holes and electrons in a semiconductor.
What is an LED?

A Light Emitting Diode (LED) produces light of a single color by combining holes and electrons in a semiconductor.

Actual Blue LED

Packaged Blue LED

Size: 0.4 mm x 0.4 mm
White LED: Combining Colors

White Light: Blue + Other colors (red, yellow, green)

Other Colors: Convert Blue LED Light to Yellow using Phosphor.

Blue LED → Phosphor → White Light

- Blue LED
- Phosphor: Convert Blue to Yellow
- White Light: Blue + Yellow

S. Pimputkar et al., *Nature Photonics* 3 (2009) 180—182
Applications for InGaN-Based LEDs

Solid State Lighting
Decorative Lighting
Automobile Lighting
Displays
Agriculture
Indoor Lighting
Energy Savings Impact

~ 40% Electricity Savings (261 TWh) in USA in 2030 due to LEDs

Eliminates the need for 30+ 1000 MW Power Plants by 2030

Avoids Generating ~ 185 million tons of CO₂
1980s: ZnSe vs. GaN

II-VI vs. III-N IN THE LATE ‘80S
Candidates for Blue LEDs: ZnSe vs. GaN

Semiconductors that possess the required properties to efficiently generate blue light: ZnSe and GaN

BUT ... How does one *create* ZnSe / GaN?

Single crystal growth of material on top of different, available single crystal:

<table>
<thead>
<tr>
<th>Material</th>
<th>Lattice Mismatch</th>
<th>Dislocations (Defects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnSe</td>
<td>0 %</td>
<td>Few</td>
</tr>
<tr>
<td>GaAs</td>
<td>16 %</td>
<td>Significant</td>
</tr>
<tr>
<td>Al₂O₃ (Sapphire)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dislocation / Defect
GaN on Sapphire: Heavily Defected

Too many Dislocations/Defects

GaN

Sapphire (Al₂O₃)

Cross section Transmission Electron Microscope (TEM) of GaN on Sapphire, F. Wu et al., UCSB
1989: ZnSe vs. GaN for Blue LED

ZnSe on GaAs Substrate

- **High Crystal Quality**: Dislocation density $< 1 \times 10^3$ cm$^{-2}$
- **Very Active Research**: $> 99\%$ of researchers

GaN on Sapphire Substrate

- **Poor Crystal Quality**: Dislocation density $> 1 \times 10^9$ cm$^{-2}$
- **Little Research**: $< 1\%$ of researchers

Interest at 1992 JSAP Conference:

- **ZnSe** – Great Interest: ~ 500 Audience
- **GaN** – Little Interest: < 10 Audience

GaN Actively Discouraged:

- “GaN has no future”
- “GaN people have to move to ZnSe material”
1989: Starting Point of Research

Seeking to get Ph.D. by writing papers

- Very few papers written for GaN
- Great topic to publish lots of papers!

Working at a small company:

- Small Budget
- One Researcher

Commonly accepted in 1970s—1980s:

- LEDs need dislocation density $< 1 \times 10^3$ cm$^{-2}$

Never thought I could invent blue LED using GaN...
Development of GaN

GaN MATURES
MOCVD GaN before 1990s

MOCVD Reactor

MOCVD System:
- High carrier gas velocity: \(\sim 4.25 \text{ m/s} \)
- Poor uniformity
- Poor scalability
- Poor reproducibility
- Poor control

AlN Buffer Layers:
- Crack free GaN growth
- High Structural Quality GaN

But ...
- Al causes significant problems in MOCVD reactor, undesired

H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda,
Invention: Two-Flow MOCVD

Invention of Two-Flow MOCVD System
(MOCVD: Metal-Organic Chemical Vapor Deposition)

Reproducible, uniform, high quality GaN growth possible
Low carrier gas velocity: \(~ 1 \text{ m/s}\)

Schematic of Two-Flow MOCVD

Main Breakthrough:
Subflow to gently “push” gases down
and improve thermal boundary layer
First MOCVD GaN Buffer Layer

GaN Buffer Layer on Sapphire substrate:

High Quality GaN Growth
Smooth and Flat Surface over 2” Substrate

Highest Hall mobilities reported to date:
- No Buffer: 50 cm²/V s
- AlN Buffer: 450 cm²/V s
- **No Buffer**: 200 cm²/V s
- **GaN Buffer**: 600 cm²/V s

Hall Mobility vs. GaN Thickness

- •: 77 °K
- ■: 300 °K

Two-Flow
Passivation of p-type GaN

Discovery: Hydrogen (H^+) is source of passivation of p-type GaN

As grown MOCVD GaN contains significant hydrogen concentrations:

- MOCVD Growth Gases contains NH_3
- GaN:Mg with Mg-H Complex (not p-type, highly resistive)
Thermal Annealing of \(p \)-type GaN

Prior: Everyone annealed in \(H^+ \) containing environment: **no \(p \)-type GaN**

Thermal Annealing in **\(H^+ \) free** environment: **\(p \)-type GaN, Industrial Process Compatible**

Thermal Annealing in \(N_2 \)

Resistivity of MOCVD GaN:Mg vs. \(T \)

![Graph showing Resistivity of MOCVD GaN:Mg vs. Temperature (°C)](image)

- **Not \(p \)-type GaN**
- **\(p \)-type GaN**
GaN Based Diodes

p-n GaN Homojunction

- Good Crystal Quality
- Very Dim Light Production
- Very Inefficient
- Output power $<<$ mW
- Cannot tune color

Not Suitable for LEDs

Double Heterostructure
(Z.I. Alferov & H. Kroemer, 2000 Nobel Prize in Physics)

- Tunable Colors
- Efficient Device Structure
- Output Power $> mW$
Double heterostructures increase carrier concentrations \((n)\) in the active layer and enhance radiative recombination rates (more light generated).
Development of InGaN

ENABLING THE HIGH-EFFICIENCY LED
InGaN: At the Heart of the LED

InGaN meets **DH requirements**

- Smaller, Tunable Band Gap / Color by changing **Indium** in $\text{In}_x\text{Ga}_{1-x}\text{N}$ Alloy

Significant Challenges though ...

- Hard to **incorporate Indium** as high vapor pressure (Indium boils off)
 - Growth at substantially **lower T**:
 - Poor Crystal Quality
 - More Defects, Impurities
- Grow **thin** Layer ("**Quantum Well**")
 - Need fine Control over Growth Conditions
 - High quality interfaces / surface morphology
- Introduces **Strain** in Crystal
 - Indium $\sim 20\%$ **bigger** than Gallium
InGaN growth in 1991

Despite numerous attempts by researchers in the 1970s—1980s, high quality InGaN films with **room temperature band-to-band emission** had not been achieved.

InGaN Growth:
- Poor quality at low T
- Low incorporation at high T
- Hard to control In concentration
- High impurity incorporation
- Heavily defected

InGaN Luminescence:
- No band-to-band light emission at room temperature (fundamental for any LED device)
- Significant defect emission

N. Yoshimoto, T. Matsuoka, T. Sasaki, A. Katsui,
High Quality InGaN Layers

Enabling Technology: Two-Flow MOCVD

High Quality InGaN Growth with Band-to-Band Emission

Controllably vary Indium Concentration and hence color

Photoluminescence Spectra of InGaN

Wavelength vs. Indium Fraction

Wavelength (nm)

Indium Mole Fraction X

- Violet
- Indigo
First High Brightness InGaN LED

Breakthrough Device with **Exceptional** Brightness
(2.5 mW Output Power @ 450 nm (Blue))

Optimization of thin InGaN Active Layer

InGaN/AlGaN Double Heterostructure LED

Output Power vs. Current

- **2.5 mW**
- Forward Current (mA)
- Output Power (μW)
- $T_a = 25 \degree C$
The Blue LED is born
1st InGaN QW Blue/Green/Yellow LEDs

High Brightness LEDs of **varying colors** by increasing Indium content.

Demonstration of **Quantum Wells** (QWs).

Green SQW LED

Electroluminescence

![Diagram of Green SQW LED with Quantum Wells and Electroluminescence spectra showing blue, green, and yellow emissions at 20%, 43%, and 70% Indium content.](image-url)
1st Violet InGaN MQW Laser Diode

First Demonstration of a Violet Laser using multiple QWs.

Laser Structure using InGaN

p-GaN
p-Al_{0.15}Ga_{0.85}N
p-GaN
p-Al_{0.2}Ga_{0.8}N
InGaN MQW
n-GaN
n-Al_{0.15}Ga_{0.85}N
n-In_{0.1}Ga_{0.9}N
n-GaN

Light Output vs. Current

InGaN MQW LD
\(\lambda = 417 \text{ nm} \)
pulsed, 300 K

Starts to lase
Comparison InGaN vs. other LEDs

Inhomogeneous: (InGaN)
Bright (!) despite high defects
Higher currents mask inhomogeneity effects (valleys fill up)

Homogeneous: (GaN, AlGaN)
Dim as defects “swallow” electrons without producing light

Possible Origins of High Efficiency

Indium Fluctuations form localized states:

Separate electrons from defects

Indium in Active Layer

Random Binomial Distribution

![Image of Indium in Active Layer with Random Binomial Distribution](image)

Side View in Energy Landscape

Atom Probe Tomography, D. Browne *et al.*, UCSB

Historical Perspective
PAST, PRESENT, FUTURE
Historical: LED Efficiency

After: G. Craford, Philips Lumileds Lighting Company

InGaN DH-LED by Nakamura et al., 1993

InGaN DH-LED by Nakamura et al., 1993

After: G. Craford, Philips Lumileds Lighting Company
Contributions towards efficient blue LED

- **p-type GaN** activated by thermal annealing by Nakamura, 1991
- **Hydrogen passivation** was clarified as an origin of hole compensation
- **InGaN Emitting (Active) Layer** by Nakamura, 1992
- **p-type GaN** activated by Electron Beam Irradiation by Akasaki & Amano, 1989
- **GaN Buffer** by Nakamura, 1991
- **AlN Buffer** by Akasaki & Amano, 1985
- **n-type GaN**
- **Sapphire substrate**
GaN/InGaN on Sapphire Research

<table>
<thead>
<tr>
<th>Year</th>
<th>Researcher(s)</th>
<th>Achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969</td>
<td>Maruska & Tietjen</td>
<td>GaN epitaxial layer by HVPE</td>
</tr>
<tr>
<td>1973</td>
<td>Maruska et al.</td>
<td>1st blue Mg-doped GaN MIS LED</td>
</tr>
<tr>
<td>1983</td>
<td>Yoshida et al.</td>
<td>High quality GaN using AlN buffer by MBE</td>
</tr>
<tr>
<td>1985</td>
<td>Akasaki & Amano et al.</td>
<td>High quality GaN using AlN buffer by MOCVD</td>
</tr>
<tr>
<td>1989</td>
<td>Akasaki & Amano et al.</td>
<td>p-type GaN using LEEBI (p is too low to fabricate devices)</td>
</tr>
<tr>
<td>1991</td>
<td>Nakamura</td>
<td>Invention of Two-Flow MOCVD</td>
</tr>
<tr>
<td>1991</td>
<td>Moustakas et al.</td>
<td>High quality GaN using GaN buffer by MBE</td>
</tr>
<tr>
<td>1991</td>
<td>Nakamura</td>
<td>High quality GaN using GaN buffer by MOCVD</td>
</tr>
<tr>
<td>1992</td>
<td>Nakamura et al.</td>
<td>p-type GaN using thermal annealing, Discovery hydrogen passivation (p is high enough for devices)</td>
</tr>
<tr>
<td>1992</td>
<td>Nakamura et al.</td>
<td>InGaN layers with RT Band to Band emission</td>
</tr>
<tr>
<td>1994</td>
<td>Nakamura et al.</td>
<td>InGaN Double Heterostructure (DH) Bright Blue LED (1 Candela)</td>
</tr>
<tr>
<td>1995</td>
<td>Nakamura et al.</td>
<td>InGaN DH Bright Green LED</td>
</tr>
<tr>
<td>1996</td>
<td>Nakamura et al.</td>
<td>1st Pulsed Violet InGaN DH MQW LDs</td>
</tr>
<tr>
<td>1996</td>
<td>Nakamura et al.</td>
<td>1st CW Violet InGaN DH MQW LDs</td>
</tr>
<tr>
<td>1996</td>
<td>Nichia Corp.</td>
<td>Commercialization White LED using InGaN DH blue LED</td>
</tr>
</tbody>
</table>
UCSB’s Vision

LED based White Light is great, **Laser based** is even better!

Device

LED
- Sapphire

Laser
- Bulk GaN
- Phosphor Strip

60 W Incandescent Equivalent

- **LED**: 28 mm²
- **Laser**: 0.3 mm²

External Quantum Efficiency

LED/Laser vs. Current Density

M. Cantore *et al.*, UCSB

Commercial LED & Laser

External Quantum Efficiency (%)

- **LED**: High efficiency at lower current densities
- **Laser**: Constant high efficiency across a wide range of current densities

Current Density (kA/cm²)

- **LED**: Peaks at lower densities
- **Laser**: Consistent performance across densities

M. Cantore *et al.*, UCSB
Acknowledgements

Nichia:

Nobuo Ogawa, Founder of Nichia Chemical Corp.

Eiji Ogawa, President

Colleagues of R&D Departments in 1989—1999

All employees of Nichia Chemical Corporation

UCSB:

Chancellor Henry Yang

Dean Rod Alferness, Matthew Tirrell

Profs. Steve DenBaars, Jim Speck, Umesh Mishra