Nobelprize.org
Lists of Nobel Prizes and Laureates

The p—p Chain Reaction

p-p reaction

 

pp2-reaction

 

pp3

In theoretical models of the sun, the p—p chain of nuclear reactions illustrated here is the dominant source of energy production. Each reaction is labeled by a number in the upper left hand corner of the box in which it is contained. In reaction 1, two hydrogen nuclei (1H, protons) are fused to produce a heavy hydrogen nucleus (2H, a deuteron). This is the usual way nuclear burning gets started in the sun. On rare occasions, the process is started by reaction 2. Deuterons produced in reactions 1 and 2 fuse with protons to produce a light element of helium (3He). At this point, the p—p chain breaks into three branches, whose relative frequencies are indicated in the figure. The net result of this chain is the fusion of four protons into a single ordinary helium nucleus (4He) with energy being released to the star in accordance with Einstein's equation. Particles called 'neutrinos' ( ) are emitted in these fusion processes. Their energies are shown in the figure in units of millions of electron volts (MeV). Reactions 2 and 4 were not discussed by Hans Bethe.

The figure is adapted from J.N. Bahcall, Neutrinos from the Sun, Scientific American, Volume 221, Number 1, July 1969, pp. 28-37.

Share this:
To cite this page
MLA style: "Fusion". Nobelprize.org. Nobel Media AB 2014. Web. 17 Sep 2014. <http://www.nobelprize.org/nobel_prizes/themes/physics/fusion/sun_pp-chain.html>

Recommended:

On 27 November 1895 Alfred Nobel signed his last will in Paris.

 

Try to save some patients and learn about human blood types!

 

Discover the 2012 awarded research on stem cells and cell signalling.