FROM LITTLE ACORNS TO TALL OAKS-
FROM BORANES THROUGH ORGANOBORANES

Nobel Lecture, 8 December, 1979

by
HERBERT C. BROWN

Department of Chemistry, Purdue University, West Lafayette, Indiana, USA

I. INTRODUCTION

This Nobel Lecture provides me with an exceptional opportunity to trace my research program in boranes from its inception in 1936, as an investigation initiated for my Ph.D. thesis, to the present time, when this program has been recognized by the award of the Nobel Prize for 1979 (shared with my good friend, Georg Wittig).

In 1936 diborane, \(\text{B}_2\text{H}_6 \), was a rare substance, prepared in less than gram quantities in only two laboratories, that of Alfred Stock at Karlsruhe, Germany, and of H. I. Schlesinger, at the University of Chicago. The existence of the simplest hydrogen compound of boron, not as \(\text{BH}_3 \), but as \(\text{B}_2\text{H}_6 \), was considered to constitute a serious problem for the electronic theory of G. N. Lewis:[1] The reactions of diborane were under study at the University of Chicago by Professor H. I. Schlesinger and his research assistant, Anton B. Burg, in the hope that a knowledge of the chemistry would aid in resolving the structural problem.

I received the Assoc. Sci. degree from Wright Junior College (Chicago) in 1935 and the B.S. degree from the University of Chicago in 1936. Why did I decide to undertake my doctorate research in the exotic field of boron hydrides? As it happened, my girl friend, Sarah Baylen, soon to become my wife, presented me with a graduation gift, Alfred Stock's book, *The Hydrides of Boron and Silicon.*[1] I read this book and became interested in the subject. How did it happen that she selected this particular book? This was the time of the Depression. None of us had much money. It appears that she selected as her gift the most economical chemistry book ($2.06) available in the University of Chicago bookstore. Such are the developments that can shape a career!

Shortly before I undertook research on my Doctorate, H. I. Schlesinger and Anton Burg had discovered that carbon monoxide reacts with diborane to produce a new substance, borane-carbonyl, \(\text{H}_2\text{B}(:\text{C}::\text{O})_2 \).[2] There was considerable discussion as to whether the product was a simple addition compound, or whether the reaction had involved a migration of a hydride unit from boron to carbon.

\[
\begin{align*}
\text{H}_2\text{B}(:\text{C}::\text{O}) \quad \text{H}_2\text{B}(:\text{C}::\text{O})_2
\end{align*}
\]
It was thought that an understanding of the reaction of diborane with aldehydes and ketones might contribute to a resolution of this problem. Accordingly, I was encouraged to undertake such a study.

Once I mastered the high-vacuum techniques developed by Stock for work with diborane, it did not take me long to explore the reactions of diborane with aldehydes, ketones, esters, and acid chlorides. It was established that simple aldehydes and ketones react rapidly with diborane at 0° (even at -78°) to produce dialkoxyboranes (1).

\[2 \text{R}_2\text{CO} + \frac{1}{2}(\text{BH}_3)_2 \rightarrow (\text{R}_2\text{CHO})_2\text{BH} \]

These dialkoxyboranes are rapidly hydrolyzed by water to give the corresponding alcohols (2).

\[(\text{R}_2\text{CHO})_2\text{BH} + 3 \text{H}_2\text{O} \rightarrow 2 \text{R}_2\text{CHOH} + \text{H}_2 + \text{B(OH)}_3 \]

The reactions with methyl formate and ethyl acetate were slower, but quantitative reductions were achieved. No appreciable reaction was observed with chloral, acetyl chloride, and carbonyl chloride.

My Ph.D. thesis was completed in 1938 and the contents were published in 1939. At the time the organic chemist had available no really satisfactory method for reducing the carbonyl group of aldehydes and ketones under such mild conditions. Yet little interest in this development was evinced. Why?

In 1939 diborane was a very rare substance, prepared in only minor amounts in two laboratories in the world, handled only by very specialized techniques. How could the synthetic organic chemist consider using such a rare substance as a reagent in his work?

It would be nice to report that one of the three authors had the foresight to recognize that the development of practical methods of preparing and handling diborane would make this reductive procedure of major interest to organic chemists throughout the world. But that was not the case. The problem was later solved, but primarily because of the requirements of research supporting the war effort, and not because of intelligent foresight.

II. THE ALKALI METAL HYDRIDE ROUTE TO DIBORANE AND BOROHYDRIDES

In 1939 Anton B. Burg transferred to the University of Southern California and I became research assistant to Professor Schlesinger. In the Fall of 1940 he was requested to undertake for the National Defense Research Committee a search for new volatile compounds of uranium of low molecular weight. As his research assistant, I became his lieutenant in this war research program.

Just prior to this development, aluminum borohydride \([4] \text{Al}(\text{BH}_3)_3\), beryllium borohydride,\([5] \text{Be}(\text{BH}_3)_2\), and lithium borohydride,\([6] \text{LiBH}_3\), had been synthesized in our laboratories. The lithium derivative was a typical non-volatile, salt-like compound, but the aluminum and beryllium derivatives
were volatile, the most volatile compounds known for these elements. Accordingly, we undertook to synthesize the unknown uranium (IV) borohydride (3).

$$\text{UF}_4 + 2 \text{Al} (\text{BH}_4)_3 \rightarrow \text{U}(\text{BH}_4)_4 \uparrow + 2 \text{AlF}_2 (\text{BH}_4) \downarrow$$ \hspace{1cm} (3)

The synthesis was successful.[7] Moreover, the product, U(BH₄)₄, had a low molecular weight (298) and adequate volatility. We were requested to supply relatively large amounts of the material for testing.

The bottle-neck was diborane. We had six diborane generators operated by six young men. Each generator could produce 0.5 g of diborane per 8-hour working day, a total production, when all went well, of 3 g per day, or 1 kg per year! Clearly, we had to find a more practical route to diborane.

We soon discovered that the reaction of lithium hydride with boron trifluoride in ethyl ether solution provided such a route[8] (4).

$$6 \text{LiH} + 8 \text{BF}_3 \cdot \text{OE}t_2 \xrightarrow{\text{Et}_2 \text{O}} \text{(BH}_3\text{)}_2 \uparrow + 6 \text{LiBF}_4 \downarrow$$ \hspace{1cm} (4)

We could now prepare diborane in quantity and transform it into uranium (IV) borohydride by simple reactions (5, 6).

$$\text{LiH} + \frac{1}{2} (\text{BH}_3)_2 \xrightarrow{\text{Et}_2 \text{O}} \text{LiBH}_4$$ \hspace{1cm} (5)[9]

$$\text{AlCl}_3 + 3 \text{LiBH}_4 \xrightarrow{\Delta} \text{Al}(\text{BH}_4)_3 \uparrow + 3 \text{LiCl} \downarrow$$ \hspace{1cm} (6)[10]

$$\text{UF}_4 + 2 \text{Al} (\text{BH}_4)_3 \rightarrow \text{U}(\text{BH}_4)_4 \uparrow + 2 \text{AlF}_2 (\text{BH}_4) \downarrow$$ \hspace{1cm} (3)

Unfortunately, we were informed that lithium hydride was in very short supply and could not be spared for this synthesis. We would have to use sodium hydride instead.

Unfortunately, with the solvents then available, the direct use of sodium hydride was not successful. However, a new compound, sodium trimethoxy-borohydride,[11] readily synthesized from sodium hydride and methyl borate, solved the problem (7).

$$\text{NaH} + \text{B(OCH}_3)_3 \rightarrow \text{NaBH(OCH}_3)_3$$ \hspace{1cm} (7)

It proved to be very active and provided the desired transformations previously achieved with lithium hydride (4-6).

At this stage we were informed that the problems of handling uranium hexafluoride had been overcome and there was no longer any need for uranium borohydride. We were on the point of disbanding our group when the Army Signal Corps informed us that the new chemical, sodium borohydride appeared promising for the field generation of hydrogen. However, a more economical
means of manufacturing the chemical was required. Would we undertake a research program with this objective?

We soon discovered that the addition of methyl borate to sodium hydride maintained at 250° provided a mixture of sodium borohydride and sodium methoxide[12] (8).

$$4 \text{NaH} + \text{B(OCH}_3\text{)}_3 \xrightarrow{250^\circ} \text{NaBH}_4 + 3 \text{NaOCH}_3$$ \hspace{1cm} (8)

This provides the basis for the present industrial process for the manufacture of sodium borohydride.

III. REDUCTIONS WITH COMPLEX HYDRIDES

In the course of search for a solvent to separate the two reaction products, acetone was tested. Rapid reduction of the acetone was observed[9] (9).

$$\text{NaBH}_4 + 4 \text{R}_2\text{C}=\text{O} \rightarrow \text{NaB(OCHR}_2\text{)}_4 \downarrow \text{H}_2\text{O}$$ \hspace{1cm} (9)

$$\text{NaB(OH)}_4 + 4 \text{R}_2\text{CHOH}$$

In this way it was discovered that sodium borohydride is a valuable reagent for the hydrogenation of organic molecules.

At this stage I departed the University of Chicago for Wayne University (Detroit). With the much smaller opportunities for research at this institution, I concentrated on my program dealing with steric strains.[13, 14]

At the University of Chicago the alkali metal hydride route was successfully extended for the synthesis of the corresponding aluminum derivatives. Thus lithium aluminum hydride was synthesized in 1945 by the reaction of lithium hydride and aluminum chloride in ether solution[15] (10).

$$4 \text{LiH} + \text{AlCl}_3 \xrightarrow{\text{Et}_2\text{O}} \text{LiAlH}_4 + 3 \text{LiCl}$$ \hspace{1cm} (10)

The discovery of sodium borohydride[9] in 1942 and of lithium aluminum hydride[15] in 1945 brought about a revolutionary change in procedures for the reduction of functional groups in organic molecules.[16] As first described by W. G. Brown and his coworkers, there is a major difference in the behavior of these two reducing agents.[16] Lithium aluminum hydride is an exceedingly powerful reducing agent, capable of reducing practically all functional groups. On the other hand, sodium borohydride is a remarkably mild reducing agent, readily reducing only aldehydes, ketones, and acid chlorides.[16] Consequently, we had available two reagents which exhibited extremes in their reducing capabilities (Fig. 1).

In 1947 I came to Purdue University with the opportunity for markedly expanding my research program. I decided to explore means of increasing the reducing properties of sodium borohydride and of decreasing the reducing
Table 1. Sodium borohydride and lithium aluminum hydride as extremes in a possible spectrum of hydric reducing agents. R = Reduced in non-hydroxylic solvents, reacts with hydroxylic solvents.

<table>
<thead>
<tr>
<th></th>
<th>NaBH₄</th>
<th></th>
<th>LiAlH₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldehyde</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketone</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid chloride</td>
<td>R</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Lactone</td>
<td>-</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Epoxide</td>
<td>-</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Ester</td>
<td>-</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Acid</td>
<td>-</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Acid salt</td>
<td>-</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>tert-Amide</td>
<td>-</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Nitrile</td>
<td>-</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Nitro</td>
<td>-</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Olefin</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 1. Sodium borohydride and lithium aluminum hydride as extremes in a possible spectrum of hydric reducing agents. R = Reduced in non-hydroxylic solvents, reacts with hydroxylic solvents.

properties of lithium aluminum hydride. In this way the organic chemist would have at his disposal a full spectrum of reducing agents - he could select that reagent which would be most favorable for the particular reduction required in a given situation.

We quickly established that changes in the metal ion from sodium to lithium, to magnesium, and to aluminum greatly increase the reducing power of the borohydride moiety\(^\text{[17]}\) \(^\text{(11)}\):

\[
\frac{\text{NaBH}_4 < \text{LiBH}_4 < \text{Mg(BH}_4)_2 < \text{Al(BH}_4)_3}{\text{increasing reducing power}}
\]

On the other hand, the reducing power of lithium aluminum hydride could be diminished by the introduction of alkoxy substituents\(^\text{[18, 19]}\) \(^\text{(12)}\):

\[
\frac{\text{LiAlH(Ot-Bu)}_3 < \text{LiAlH(OMe)}_3 < \text{LiAlH}_4}{\text{decreasing reducing power}}
\]
Indeed, it has proven possible to enhance the reducing power of a borohydride \((\text{LiEt}_3\text{BH})\)\(^{20}\) until it exceeds that of lithium aluminum hydride and to diminish the reducing power \((\text{K}(\text{i-PrO})_3\text{BH})\)\(^{21}\) so that it is even less than that of the parent borohydride (Fig. 2).

Finally, we discovered major differences between reduction by electrophilic reagents, such as diborane\(^{22}\) and aluminum hydride,\(^{23}\) and by nucleophilic reagents, such as sodium borohydride\(^{16}\) and lithium aluminum hydride\(^{16}\) (Fig. 3). It is often possible now to reduce group A in the presence of B, or group B in the presence of A, by a careful choice of reagents. This is nicely illustrated by the synthesis of both \((R)\)- and \((S)\)-mevalonolactone from a common precursor\(^{24, 25}\) (Fig. 4).

It should be pointed out that these studies were greatly facilitated by many exceptional coworkers, among whom I would like to mention especially, Nung Min Yoon and S. Krishnamurthy.

EFFECT OF SUBSTITUENTS

\[
\begin{align*}
\text{K}(\text{i-PrO})_3\text{BH} & \quad \text{Li}(\text{MeO})_3\text{AlH} \\
\text{Li}(\text{t-BuO})_3\text{AlH} & \quad \text{NaBH}_4\text{CN} \\
\text{LiEt}_3\text{BH} &
\end{align*}
\]

![Diagram](image)

Fig. 2. Alteration of the reducing power of the two extreme reagents, sodium borohydride and lithium aluminum hydride.
<table>
<thead>
<tr>
<th></th>
<th>NaBH₄ in ethanol</th>
<th>Li(£BuO)₂AIH in THF</th>
<th>LiBH₄ in THF</th>
<th>Al(BH₄)₃ in DG</th>
<th>B₂H₆ in THF</th>
<th>Si₂BH in THF</th>
<th>9-BBN in THF</th>
<th>AlH₃ in THF</th>
<th>Li(MeO)₂AIH in THF</th>
<th>LiAIH₄ in THF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldehyde</td>
<td>+</td>
</tr>
<tr>
<td>Ketone</td>
<td>+</td>
</tr>
<tr>
<td>Acid chloride</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lactone</td>
<td>-</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Epoxide</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ester</td>
<td>-</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Acid salt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>tert-Amide</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrile</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Nitro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Olefin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 3. Variation in reduction characteristics with electrophilic and nucleophilic reagents.
IV. HYDROBORATION

In the course of these studies of selective reductions, a minor anomaly resulted in the discovery of hydroboration. My coworker, Dr. B. C. Subba Rao, was examining the reducing characteristics of sodium borohydride in diglyme catalyzed by aluminum chloride [17]. He observed that the reduction of ethyl oleate under our standard conditions, 4 moles of hydride per mole of compound, one hour at 25°, took up 2.37 equivalents of hydride per mole of ester. This contrasted with a value of 2.00 for ethyl stearate. Investigation soon established that the reagent was adding an H-B bond to the carbon-carbon double bond to form the corresponding organoborane [26].

Exploration of this reaction soon established improved procedures for carrying it out. Of special value was the discovery that the addition of diborane to alkenes was markedly catalyzed by ethers [27]. In the presence of such ethers, the reaction is practically instantaneous and quantitative (13).

\[\text{C} = \text{C} + \text{H-B} \rightarrow \text{H-C-C-B} \]

(My parents were far-seeing in giving me the initials H. C. B.)

Dr. Subba Rao established that oxidation of such organoboranes, in situ, with alkaline hydrogen peroxide, proceeds quantitatively, producing alcohols with the precise structure of the organoborane [26,27](14).

\[\text{H-C-C-B} \xrightarrow{\text{H}_2\text{O}_2/40^\circ} \text{H-C-C-OH} \]

At this stage in the development, Dr. B. C. Subba Rao returned to India, after spending five years with me. Fortunately, an equally competent and productive coworker, Dr. George Zweifel, soon joined my group. Although
trained at the E. T. H. in Zurich as a carbohydrate chemist, he expressed a deep interest in the possibilities of the hydroboration reaction and progress was extraordinarily rapid[28].

It was soon established that the addition proceeds in an anti-Markovnikov manner (15).

\[
\begin{align*}
\text{CH}_3 \\
\text{CH}_3\text{CH}_2\text{C}==\text{CH}_2 & \xrightarrow{\text{HB}} \text{CH}_3\text{CH}_2\text{CCH}_2\text{B} + \text{CH}_3\text{CH}_2\text{CCH}_3 \\
\text{H} & \xrightarrow{\text{B}} \\
99 \% & \xrightarrow{\text{B}} 1 \%
\end{align*}
\]

The reaction involves a cis-addition of the H—B bond (16).

\[
\text{pure trans}
\]

The addition takes place preferentially from the less hindered side of the double bond (17).

\[
\begin{align*}
\text{HB} & \xrightarrow{\text{B}} \text{99.6 \%} \\
\text{B} & \xrightarrow{\text{OH}} \\
0.4 \% & \xrightarrow{\text{B}}
\end{align*}
\]

No rearrangements of the carbon skeleton have been observed, even in molecules as labile as α-pinene (18).

\[
\begin{align*}
\text{HB} & \xrightarrow{\text{B}} \\
\text{B} & \xrightarrow{\text{OH}}
\end{align*}
\]

Most functional groups can tolerate hydroboration (19).

\[
\text{CH}_2==\text{CHCH}_2\text{CO}_2\text{R} \xrightarrow{\text{HB}} \text{B—CH}_2\text{CH}_2\text{CH}_2\text{CO}_2\text{R}
\]

Now the organic chemist can conveniently synthesize reactive intermediates containing functional groups and utilize those intermediates to form products with new carbon-carbon bonds.

Standardized procedures for hydroboration have been developed and are fully described as well as the utilization of the organoborane products for organic syntheses[29]. (To conserve space, references will be given only to developments which have appeared since the publication of this book.)
V. NEW HYDROBORATING AGENTS

The hydroboration of simple olefins generally proceeds directly to the formation of the trialkylborane\(^{20,29}\) (20).

\[
3 \text{CH}_3\text{C} = \text{CH}_2 + \text{BH}_3 \xrightarrow{\text{THF}} [(\text{CH}_3)_2\text{CHCH}_2]_3\text{B}
\]

However, in a number of instances it has been possible to control the hydroboration to achieve the synthesis of monoalkylboranes, dialkylboranes, and cyclic and bicyclic boranes (Fig. 5). Many of these reagents, such as thexylborane\(^{30}\), disiamylborane\(^{31}\), dipinylborane\(^{32}\), and 9-borabicyclo-[3.3.1]nonane\(^{33}\), have proven to be valuable in overcoming problems encountered with the use of diborane itself.

In a number of cases, hydroboration with heterosubstituted boranes has also proven valuable. Research in this area was greatly facilitated by exceptional contributions from S. K. Gupta, N. Ravindran, and S. U. Kulkarni. For example, catecholborane\(^{34}\) and the chloroborane etherates\(^{35}\) (Fig. 6) permit the synthesis of boronic and borinic acid esters, as well as the synthesis of the simple mono- and dialkylchloroboranes, RBCl\(_2\), and R,BCl. The corresponding haloborane-dimethyl sulfides are stabler and easier to work with\(^{36}\) (Fig. 7).

![Diagram of partially alkylated boranes](image-url)

Fig. 5. The synthesis of partially alkylated boranes
Fig. 7. The synthesis of heterosubstituted boranes

These reagents often exhibit marked advantages in hydroboration over diborane itself. For example, disiamylborane yields far less of the minor isomer in the hydroboration of terminal olefins than does diborane (21).

Disiamylborane also favors addition of the boron atom to the less substituted position of a 1,2-dialkylethylene (22).
9-BBN exhibits an even greater selectivity (23).

\[
(\text{CH}_3)_4\text{CH} \quad \text{CH}_3
\]

\[
\text{CH}_3(\text{CH}_2)_3\text{CH}=\text{CH}_2
\]

\[
\text{C}=\text{C}
\]

\[
\text{H} \quad \text{H}
\]

9-BBN 0.1 99.9 % 9-BBN 0.2 99.8 %

\[
\begin{array}{c}
\text{H}_3\text{C} \\
\text{C}=\text{C} \\
\text{H} \quad \text{H}
\end{array}
\]

\[
\text{IPC}_2\text{BH} \rightarrow \begin{array}{c}
\text{CH}_3 \\
\text{CH}_2 \\
\text{CH}_3
\end{array}
\]

98.4 % optically pure

VI. THE VERSATILE ORGANOBLORANES

At the time we were exploring the hydroboration reaction, many individuals expressed skepticism to me as to the wisdom of devoting so much research effort to this reaction. After all, hydroboration produced organoboranes. Relatively little new chemistry of organoboranes had appeared since the original classic publication by Frankland in 1862. They took the position that the lack of published material in this area meant that there was little of value there.

In this case it is now clear that this position is not correct. After our exploration of the hydroboration reaction had proceeded to the place where we felt we understood the reaction and could apply it with confidence to new situations, we began a systematic exploration of the chemistry of organoboranes. This research, facilitated by a host of exceptionally capable coworkers, among whom may be mentioned M. M. Rogid, M. M. Midland, C. F. Lane, A. B. Levy, R. C. Larock, and Y. Yamamoto, made it clear that the organoboranes are among the most versatile chemical intermediates available to the chemist.

It is not possible here to give more than a taste of the rich chemistry. For a more complete treatment, the reader must go elsewhere [29,38].
Simple treatment of the organoborane with halogen in the presence of a suitable base produces the desired organic halide\[39,40\] (25, 26).

\[
\begin{align*}
\text{CH}=&\text{CH}_2 & \text{CH}_2\text{CH}_2\text{BSi}_2 & \text{CH}_2\text{CH}_2\text{I} \\
\text{C}_{2}H_{4} & \xrightarrow{\text{Si}_{2}\text{BH}} & \text{C}_{2}H_{4} & \xrightarrow{\text{I}_{2} \text{NaOH}} \\
\text{C}_{5}H_{8} & \xrightarrow{\text{BH}_{3}} & \text{C}_{5}H_{8} & \xrightarrow{\text{Br}_{2} \text{NaOCH}_{3}}
\end{align*}
\]

Oxidation with alkaline hydrogen peroxide produces the alcohol in essentially quantitative yield with complete retention of configuration\[41\] (27).

\[
\begin{align*}
\text{C}_{2}H_{4} & \xrightarrow{\text{HB}} & \text{C}_{2}H_{4} & \xrightarrow{\text{H}_{2}\text{O}_{2} \text{NaOH}} \\
\text{C}_{5}H_{8} & \xrightarrow{\text{HB}} & \text{C}_{5}H_{8} & \xrightarrow{\text{H}_{2}\text{NOSO}_{2}\text{H}}
\end{align*}
\]

Either chloroamine or \textit{O}-hydroxylaminesulfonic acid can be used to convert organoboranes into the corresponding amines\[42\] (28).

The reaction of organoboranes with organic azides proceeds sluggishly with the more hindered organoboranes. Fortunately, this difficulty can be circumvented with the new hydroborating agents\[43\] (29).

\[
\begin{align*}
\text{C}_{2}H_{4} & \xrightarrow{\text{HBCl}_{3}} & \text{C}_{2}H_{4} & \xrightarrow{1. \text{RN}_{3}} \xrightarrow{2. \text{H}_{2}\text{O}}
\end{align*}
\]

Other organometallics can be synthesized from the organoboranes\[44\] (30).

\[
\begin{align*}
\text{CH}=&\text{CH}_2 & \text{CH}_2\text{CH}_3\text{B} & \text{CH}_2\text{CH}_3\text{HgOAc} \\
(\text{CH}_2)_3\text{CO}_2\text{R} & \xrightarrow{\text{HB}} & (\text{CH}_2)_3\text{CO}_2\text{R} & \xrightarrow{\text{Hg(OAc)}_2}
\end{align*}
\]

The organoboranes can also be utilized to form carbon-carbon bonds\[29\]. One procedure utilizes transmetallation to the silver derivative, followed by the usual coupling reaction of such derivatives\[45\] (31).
Cyclopropanes are readily synthesized\cite{46} \cite{32}.

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{C} = \text{CH}_2 & \quad \text{CHCH}_2\text{B} \\
\text{CH}_3 & \quad \text{CH}_3
\end{align*}
\]

\[
\xrightarrow{\text{HB}} + \xrightarrow{\text{AgNO}_3, \text{NaOCH}_3} \text{CH}_3\text{CHCH}_2\text{CH} \\
(\text{CH}_2)_\text{R}\text{CO}_2\text{R} \quad \text{CH}_3
\]

\[\text{CH} = \text{CH}_2 \quad \text{CH}_2\text{CH}_2\text{B} \quad (\text{CH}_2)_\text{R}\text{CO}_2\text{R} \quad (\text{CH}_2)_\text{R}\text{CO}_2\text{R}\]

\[\text{(31)}\]

It is possible to achieve the alpha-alkylation and -arylation of esters, ketones, nitriles, etc.\cite{47} \cite{33, 34}.

\[
\begin{align*}
\text{CH}_3\text{CHCH}=\text{CH}_2 & \quad 9\text{-BBN} \xrightarrow{\text{Cl, Cl}} \text{CH}_3\text{CHCH}_2\text{CH}_2 \quad \text{NaOH} \xrightarrow{\text{ClH}_2\text{C}^-} \\
\text{Cl} & \quad \text{Cl} \quad \text{Cl} & \quad \text{Cl} \quad \text{B}
\end{align*}
\]

\[\text{(32)}\]

\[\alpha\text{-Bromination provides still another route to achieve the synthesis of desired carbon structures}\cite{48} \cite{35}.\]

\[
\begin{align*}
\text{H}_2\text{C} & \quad \text{B} \quad \text{CH}_3\text{BrCO}_2\text{Et} \\
\text{base, 0°} & \quad \text{CH}_3\text{CO}_2\text{Et}
\end{align*}
\]

\[\text{(33)}\]

\[
\begin{align*}
\text{H}_2\text{C} & \quad \text{B} \quad \text{C}_6\text{H}_5\text{COCH}_2\text{Br} \\
\text{base, 0°} & \quad \text{CH}_3\text{COC}_6\text{H}_5
\end{align*}
\]

\[\text{(34)}\]
By means of this reaction, it is possible to combine three sec-butyl groups (36).

Finally, it is possible to utilize this reaction to synthesize derivatives not realizable through the Grignard reaction (37).

VII. STITCHING AND RIVETING

The hydroboration reaction allows the chemist to unite to boron under exceptionally mild conditions either three different olefins (38), or to cyclize dienes (39), or trienes (40).
Thus, hydroboration allows us to use borane and its derivatives to “stitch” together with boron either the segments of individual molecules or the segments of a relatively open complex structure.

If we could replace boron by carbon, we would be in position to “rivet” these temporary structures into the desired carbon structure.

In fact, there are now three different procedures which can be used in this way: carbonylation[51] (41), cyanidation[52] (42), and the DCME reaction[53] (43).

Consequently, stitching and riveting provides an elegant new procedure for the synthesis of complex structures. Its versatility is indicated by the synthesis of an exceptionally hindered tertiary alcohol[54] (44) and by the annelation reaction[55] (Fig. 8).
Again, these studies were greatly facilitated by a number of exceptional co-workers, among whom may be mentioned M. W. Rathke, Ei-ichi Negishi, J.-J. Katz, and B. A. Carlson.

VIII. HYDROBORATION OF ACETYLENES

Early attempts to hydroborate acetylenes with diborane led to complex mixtures[28]. Fortunately, the problem can be solved by use of borane derivatives[32,33] (45, 46).
Dibromoborane-dimethyl sulfide\[56\] appears to be especially valuable for such hydroboration of acetylenes\[57\]. The reaction readily stops at the monohydroboration step and it exhibits a valuable sensitivity to steric effects\[56\] (47).

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH} \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{C} \quad \text{C} \\
& \quad \text{H} \quad \text{BBr}_2 \cdot \text{SMc}_2 \\
96 \% &
\end{align*}
\] (47)

The different reagents exhibit very different selectivities toward double and triple bonds\[56,57\]. Thus it is now possible to achieve the preferential hydroboration in an appropriate enyne of the double bond in the presence of the triple bond\[58\] (48), or to hydroborate the triple bond selectively in the presence of the double bond\[57\] (49).

\[
\begin{align*}
\text{BH} & \quad \rightarrow \quad \text{RC} = \text{C} (\text{CH}_2)_n \text{CH} = \text{CH}_2 \\
\text{HBr}_2 \cdot \text{SMc}_2 & \quad \rightarrow \quad \text{RC} = \text{C} (\text{CH}_2)_n \text{CH} = \text{CH}_2
\end{align*}
\] (48, 49)

IX. VINYL BORANES

The monohydroboration of acetylenes makes the vinyl boranes readily available. These reveal an exceptionally rich chemistry.

For example, protonolysis proceeds readily and provides an excellent synthesis of cis-alkenes of high purity\[59\] (50).

\[
\begin{align*}
\text{R} \quad \text{C} = \text{C} \quad \text{R} & \quad \rightarrow \quad \text{R} \quad \text{C} = \text{C} \quad \text{R} \\
& \quad \text{CH}_3\text{OH} \quad \rightarrow \quad \text{R} \quad \text{C} = \text{C} \quad \text{R}
\end{align*}
\] (50)
Oxidation produces the aldehyde or ketone [57](51).

\[
\begin{align*}
\text{(CH}_3\text{)}_3\text{C} & \equiv \text{CH} & \xrightarrow{\text{HBBBr}_2\cdot\text{SMe}_2} & \text{(CH}_3\text{)}_3\text{C} & \text{H} \\
& & & \text{C} = \text{C} & \\
& & & \text{H} & \text{BBr}_2\cdot\text{SMe}_2 \\
& & & \downarrow[0] & \\
& & & \text{(CH}_3\text{)}_3\text{C} & \text{CHO}
\end{align*}
\]

The halogenation can be controlled to yield the halide either with retention[60] (52) or inversion (53) [61].

\[
\begin{align*}
\text{R} & \text{H} & \xrightarrow{\text{H}_2\text{O}} & \text{R} & \text{H} & \xrightarrow{\text{I}_2,\text{NaOH}} & \text{R} & \text{H} \\
& & & \text{C} = \text{C} & & & \text{C} = \text{C} & & & \text{C} = \text{C} \\
& & & \text{H} & \text{B(OH)}_2 & & & \text{H} & & & \text{I}
\end{align*}
\]

Mercuration readily yields the corresponding mercurial with complete retention of stereochemistry [62](54).

\[
\begin{align*}
\text{R} & \text{H} & \xrightarrow{1.\text{Br}_2} & \text{Br} & \xrightarrow{2.\text{NaOH}} & \text{C} = \text{C} \\
& & & \text{H} & \text{B(OH)}_2 & & & \text{H} & & & \text{H}
\end{align*}
\]

Pappo and Collins adopted this approach in their prostaglandin synthesis[63]. The ready conversion of these vinyl boranes into organomercurials suggested an exploration of their conversion into the organocupper intermediates. The research in this area was greatly facilitated by J. B. Campbell, Jr. Indeed, treatment of the 9-BBN adduct with sodium methoxide and the CuBr SMe₂ complex at 0° gave the diene with complete retention of stereochemistry[64] (55).
Presumably the diene arises from a thermal decomposition of the vinyl copper intermediate.

At -15° the intermediate is sufficiently stable to be diverted along another reaction path by reaction with relatively reactive organic halides[65] (56).

This gentle procedure for synthesizing vinyl copper intermediates can accommodate such functional groups as the acetoxy group utilized in the example shown.

Our research efforts in this area were greatly facilitated by exceptional contributions by a number of coworkers, including James B. Campbell, Jr. and Gary Molander.

Although time does not permit a detailed review here, attention is called to the elegant procedures developed by my former coworkers, George Zweifel and Ei-ichi Negishi, and their associates, for the synthesis of cis- and trans-olefins, and the synthesis of cis, cis-, cis, trans, and trans, trans-dienes [66].
X. PHEROMONES

Pheromones offer a promising new means for controlling insect populations without the problems of some of the earlier methods[67]. The pheromones are chemicals of relatively simple structure emitted by insects as a means of communicating with other members of the same species. Typical examples are shown in Fig. 9.

Even though the structures are relatively simple, they must be very pure so that procedures utilized for their synthesis possess unusually severe requirements for high regio- and stereospecificity. It appeared that synthetic procedures based on organoborane chemistry should be especially favorable for this objective. Accordingly, we have undertaken a new program directed toward developing simple syntheses of such pheromones based upon organoborane chemistry. This research program has been greatly facilitated by Gary A. Molander and K. K. Wang.

Fig. 9. Representative insect pheromones.
One example, the synthesis of the looper moth sex pheromone, will be presented[68]

Hydroboration of 6-acetoxy-1-hexene yields the corresponding organoborane (57).

$$3 \text{AcOCH}_2(\text{CH}_2)_2\text{CH} = \text{CH}_2 \xrightarrow{\text{BH}_3} \text{AcOCH}_2(\text{CH}_2)_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{B}$$ (57)

Reaction with the lithium acetylide from 1-hexyne gives the ate complex (58).

$$[(\text{AcOCH}_2(\text{CH}_2)_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2)_\text{BC} = \text{C}(\text{CH}_2)_2\text{CH}_3]\text{Li}$$ (58)

Treatment of the ate complex with iodine at -78° provides the acetylene[69] (59).

$$\text{AcO}(\text{CH}_2)_2\text{C} = \text{C}(\text{CH}_2)_2\text{CH}_3$$ (59)

Hydroboration with 9-BBN, followed by protonolysis with methanol, gives the desired product in an isolated yield of 75%, exhibiting a purity of > 98% (60).

$$\text{AcO}(\text{CH}_2)_6\xrightarrow{(\text{CH}_2)_2\text{CH}_3} \text{C} = \text{C}$$

$$\text{H}$$

$$\text{H}$$ (60)

It should be noted that the entire synthetic procedure can be carried out in a single flask without isolation of any material until the final product.

IX. CONCLUSION

In this Nobel Lecture I elected to discuss the results of a research program over the past 43 years on the chemistry of borane and its derivatives. This was a deliberate choice. I felt that in this way I could transmit a valuable message to my younger colleagues.

In 1938, when I received my Ph. D. degree, I felt that organic chemistry was a relatively mature science, with essentially all of the important reactions and structures known. There appeared to be little new to be done except the working out of reaction mechanisms and the improvement of reaction products. I now recognize that I was wrong. I have seen major new reactions discovered. Numerous new reagents are available to us. Many new structures are known to us. We have at hand many valuable new techniques.

I know that many of the students of today feel the same way that I did in 1938. But I see no reason for believing that the next 40 years will not be as fruitful as in the past.

In my book, Hydroboration (ref. 28), I quoted the poet: “Tall oaks from little acorns grow.”[70] But in this lecture I have started further back, to a
time when the acorn was a mere grain of pollen. I have shown how that grain of pollen developed first into an acorn. Then the acorn became an oak. The oak tree became a forest. Now we are beginning to see the outlines of a continent.

We have been moving rapidly over that continent, scouting out the major mountain ranges, river valleys, lakes, and coasts. But it is evident that we have only scratched the surface. It will require another generation of chemists to settle that continent and to utilize it for the good of mankind.

But is there any reason to believe that this is the last continent of its kind? Surely not. It is entirely possible that all around us lie similar continents awaiting discovery by enthusiastic, optimistic explorers. I hope that one result of this lecture will be to inspire young chemists to search for such new continents.

Good luck!

REFERENCES

31. Chapter 13, ref. 28; Chapter 3, ref. 29.
66. For a review and leading references, see ref. 29.
70. See Chapter 20. Epilog, ref. 28.