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1 Introduction

Economists study how societies allocate resources. Some allocation problems
are solved by the price system: high wages attract workers into a particu-
lar occupation, and high energy prices induce consumers to conserve energy.
In many instances, however, using the price system would encounter legal
and ethical objections. Consider, for instance, the allocation of public-school
places to children, or the allocation of human organs to patients who need
transplants. Furthermore, there are many markets where the price system
operates but the traditional assumption of perfect competition is not even
approximately satisfied. In particular, many goods are indivisible and het-
erogeneous, whereby the market for each type of good becomes very thin.
How these thin markets allocate resources depends on the institutions that
govern transactions.

This year’s prizewinning work encompasses a theoretical framework for
analyzing resource allocation, as well as empirical studies and actual redesign
of real-world institutions such as labor-market clearinghouses and school ad-
missions procedures. The foundations for the theoretical framework were
laid in 1962, when David Gale and Lloyd Shapley published a mathematical
inquiry into a certain class of allocation problems. They considered a model
with two sets of agents, for example workers and firms, that must be paired
with each other. If a particular worker is hired by employer A, but this
worker would have preferred employer B, who would also have liked to hire
this worker (but did not), then there are unexploited gains from trade. If
employer B had hired this worker, both of them would have been better off.
Gale and Shapley defined a pairing to be stable if no such unexploited gains
from trade exist. In an ideal market, where workers and firms have unre-
stricted time and ability to make deals, the outcome would always be stable.
Of course, real-world markets may differ from this ideal in important ways.
But Gale and Shapley discovered a “deferred-acceptance” procedure which
is easy to understand and always leads to a stable outcome. The procedure
specifies how agents on one side of the market (e.g., the employers) make
offers to those on the other side, who accept or reject these offers according
to certain rules.

The empirical relevance of this theoretical framework was recognized by
Alvin Roth. In a study published in 1984, Roth found that the U.S. market
for new doctors had historically suffered from a series of market failures, but
a centralized clearinghouse had improved the situation by implementing a



procedure essentially equivalent to Gale and Shapley’s deferred-acceptance
process. Roth’s 1984 article clarified the tasks that markets perform, and
showed how the concept of stability provides an organizing principle which
helps us understand why markets sometimes work well, and why they some-
times fail to operate properly.

Subsequently, Roth and his colleagues used this framework, in combina-
tion with empirical studies, controlled laboratory experiments and computer
simulations, to examine the functioning of other markets. Their research has
not only illuminated how these markets operate, but has also proved useful
in designing institutions that help markets function better, often by imple-
menting a version or extension of the Gale-Shapley procedure. This has led
to the emergence of a new and vigorous branch of economics known as mar-
ket design. Note that in this context the term “market” does not presuppose
the existence of a price system. Indeed, monetary transfers are ruled out in
many important applications.

The work that is rewarded this year uses tools from both non-cooperative
and cooperative game theory. Non-cooperative game theory was the subject
of the 1994 Prize to John Harsanyi, John Nash and Reinhard Selten, and the
2005 Prize to Robert Aumann and Thomas Schelling. The starting point for a
non-cooperative analysis is a detailed description of a strategic problem faced
by individual decision makers. In contrast, cooperative game theory studies
how groups (“coalitions”) of individuals can further their own interests by
working together. The starting point for a cooperative analysis is therefore a
description of what each coalition can achieve. The person chiefly responsible
for the development of cooperative game theory is Lloyd Shapley.

In many ways, the cooperative and non-cooperative approaches comple-
ment each other. Two properties of key importance for market design are
stability, which encourages groups to voluntarily participate in the market,
and incentive compatibility, which discourages strategic manipulation of the
market. The notion of stability is derived from cooperative game theory,
while incentive compatibility comes from the theory of mechanism design, a
branch of non-cooperative game theory which was the subject of the 2007
Prize to Leonid Hurwicz, Eric Maskin and Roger Myerson.

Controlled laboratory experiments are frequently used in the field of mar-
ket design. Vernon Smith shared the 2002 Prize for his work in experimental
economics. Alvin Roth is another major contributor in this area.

The combination of game theory, empirical observations and controlled
experiments has led to the development of an empirical science with many



important practical applications. Evidence from the actual implementation
of newly designed or redesigned institutions creates an important interplay
and feedback effect: the discovery of a practical problem in implementation
may trigger theoretical elaboration, new experiments, and finally changes in
a design. Although these components form an integrated whole, we describe
them separately, starting with some basic theoretical concepts. We introduce
the idea of stability in Section 2. Then we describe some models of matching
markets in Section 3, with emphasis on the Gale-Shapley deferred-acceptance
procedure. In Section 4, we review how Alvin Roth recognized the real-world
relevance of the theory. Some real-world cases of market design are outlined
in Section 5. In Section 6, we note other important contributions of the two
laureates. Section 7 concludes.

2 Theory I: Stability

Gale and Shapley (1962) studied stable allocations in the context of a specific
model which will be described in Section 3. But first we will consider the idea
of stability from the more general perspective of cooperative game theory.

2.1 Coalitional games with transferable utility

In this section we introduce some basic definitions from cooperative game
theory.! Consider a set N = {1,2,...,n} of n individuals (or “players”), for
example, traders in a market. A group of individuals who cooperate with
each other are said to form a coalition. A game in coalitional form with
transferable utility specifies, for each coalition S C N, its “worth” v(S). The
worth is an economic surplus (a sum of money) that coalition S can generate
using its own resources. If coalition S forms, then its members can split the
surplus v(S) in any way they want, and each member’s utility equals her
share of the surplus; we call this “transferable utility”. The function v is
called the characteristic function. Two special coalitions are the singleton
coalition {i} consisting only of player i € N, and the grand coalition N
consisting of all players.

Cooperative game theory studies the incentives of individuals to form
coalitions, given that any potential conflicts of interest within a coalition

!The formal apparatus of cooperative game theory was introduced in von Neumann
and Morgenstern’s (1944) classical work.



can be solved by binding agreements. These agreements induce the coalition
members to take actions that maximize the surplus of the coalition, and
this maximized surplus is what the coalition is worth. A difficulty arises,
however, if the surplus also depends on actions taken by non-members. In
this case, the worth of a coalition can be determined in a consistent way by
assuming that the non-members try to maximize their own payoffs (Huang
and Sjostrom, 2003, Kéczy, 2007).

In games with transferable utility, it is assumed that the players can freely
transfer utility among themselves, in effect by making side-payments. But
in some environments, side-payments are constrained and utility is not (per-
fectly) transferable. For example, in the National Resident Matching Pro-
gram discussed below, wages are fixed before the market opens (Roth, 1984a).
In other situations, such as donations of human organs, side-payments are
considered “repugnant” (Roth, 2007). Cooperative game theory can han-
dle such situations, as it is very well developed for general non-transferable
utility games.

2.2 Stability and the core

Let x; denote individual ’s payoff, and let x = (z1, z, ...z,,) denote the payoff
vector. If the members of some coalition S can use their own resources to
make themselves better off, then we say that coalition S can improve upon
x, or block . When utility is transferable, coalition S can improve upon x if

Z x; < v(9). (1)
ies
Indeed, if inequality (1) holds, then S can produce v(S) and distribute this
surplus so as to make all its members strictly better off than they are under
x. The allocation x is then unstable.
An allocation is said to be stable if it cannot be improved upon by any
coalition.? Thus, with transferable utility, the payoff vector z is stable if

Z z; > v(S)

ieS
for every coalition S C N. The set of all stable payoff vectors is called the
core.

2Stability has various definitions in the literature. Throughout this document we refer
solely to stability against any possible coalitional deviation.
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Although we have introduced stability in the context of transferable util-
ity games, the definition extends in a straightforward way to general non-
transferable utility games. In general, an allocation is stable if no coalition
can improve upon it. That is, no coalition, by using its own resources, can
bring about an outcome that all its members prefer.?

The idea of stability in cooperative game theory corresponds to the idea
of Nash equilibrium in non-cooperative game theory. In non-cooperative
game theory, a Nash equilibrium is a situation such that no individual can
deviate and make herself better off. In cooperative game theory, a stable
allocation is a situation such that no coalition can deviate and make its
members better off. From an economic point of view, stability formalizes an
important aspect of idealized frictionless marketplaces. If individuals have
unlimited time and ability to strike deals with each other, then the outcome
must be stable, or else some coalition would have an incentive to form and
make its members better off. This basic idea is due to Edgeworth (1881),
and is implicit in von Neumann and Morgenstern’s (1944) analysis of stable
set solutions. D.B. Gillies (1953a,b, 1959) and Shapley (1953c, 1955) were
the first to explicitly consider the core as an independent solution concept.
Laboratory experiments, where subjects must reach an agreement without
any formalized procedure for making and accepting proposals, have provided
support for the prediction that the final agreement will belong to the core
(Berl, McKelvey, Ordeshook and Winer, 1976).

The following example shows how stable allocations are identified and
that the core (i.e., the set of stable allocations) is sometimes quite large.

Example 1 A partnership consisting of one senior partner (Mary) and two
junior partners (Peter and Paul) generates earnings of 135. If Mary leaves
the partnership, she can earn 50 on her own: v({Mary}) = 50. Any ju-
nior partner can earn 10 on his own: v({Peter}) = v({Paul}) = 10.
Mary and one junior partner together can earn 90, so v({Mary, Peter}) =

3In non-transferable utility games there can be a distinction between weak and strong
improvement. The most common definition states that a coalition can improve upon an
allocation if all its members can be made strictly better off. However, the results of
Roth and Postlewaite (1977) suggest that it can sometimes be reasonable to use a weaker
requirement: a coalition can improve upon an allocation if some members can be made
strictly better off while no member is made strictly worse off. If improvement is defined
in this weaker sense, then some coalition members may be indifferent with respect to
participating in the coalition, but they are still assumed to participate.



v({Mary, Paul}) = 90. The two juniors together can earn 25, so that
v({Peter, Paul}) = 25. The grand coalition is worth 135 and utility is trans-
ferable, so they are free to divide up the 135 in any way they want. What is
the maximum and minimum payoff Mary can get in a stable allocation?

Mary must get at least 50, and each junior partner must get at least 10, to
induce them to participate. Thus, stability requires

:EMary Z 50, xPeter > ]-07 'ZUPG,UZ Z ]‘0’

Two-player coalitions must also be taken into account: the two junior partners
can 1mprove on the allocation if they together get strictly less than 25, while
a coalition of Mary and one junior partner can improve if they together get
strictly less than 90. Thus, stability also requires

T peter T T Paul 2 25; T Mary + Tpeter Z 907 T Mary + Tpaui 2 90. (2)

These inequalities, together with the partnership’s budget restriction xrory +
Tpeter + Tpaw = 135, imply that Mary’s minimum payoff is 50, and the
mazimum is 110.*

2.3 Do stable allocations always exist?

Example 1 shows that the core may be quite large. In other instances, the
situation may be quite the opposite and the core may even be empty. To
illustrate this, suppose Example 1 is modified so that the surplus generated
by the grand coalition is only 101. This yields the budget restriction xasqyy +
Tpeter + Tpaw = 101. But if we add the three inequalities in (2), which must
still be satisfied, we find that stability requires 2 (Zarary + T peter + Tpaur) >
205. Thus, the surplus of 101 is too small to allow a stable allocation. In
general, if there is not enough surplus available, it may be impossible to divide
it up in a stable way. Bondareva (1963) and Shapley (1967) independently
derived an exact formula for how much surplus must be available in order for
the core to be non-empty in games with transferable utility. Their result was
extended to games without transferable utility by Scarf (1967) and Billera

4The most important single-valued solution concept in cooperative game theory is the
Shapley value (Shapley 1953a). Mary’s Shapley value is 80, the midpoint of the interval
[50,110] and arguably a “reasonable compromise”.



(1970). Shapley (1971) showed that the core is always non-empty if the game
is convex (in the sense that the value of a player’s marginal contribution to
a coalition is increased if other players join the coalition).?

2.4 Core and competitive equilibrium

Edgeworth (1881) was the first to argue that if some traders are not satisfied
with what they receive on the market, then they can recontract, i.e., withdraw
from the market and trade among themselves (not necessarily at prevailing
market prices). The contract curve is the set of outcomes that cannot be
destabilized by recontracting. As Shubik (1959) noted, Edgeworth’s contract
curve corresponds to the core of the economy. Edgeworth conjectured that
in markets with sufficiently many traders, the contract curve would approxi-
mately equal the competitive equilibrium, and he verified this conjecture for
the special case of two goods and two types of traders. Debreu and Scarf
(1963) verified Edgeworth’s conjecture under more general assumptions: if
the economy is replicated so the number of traders of each type becomes
very large, then the core approximately equals the set of competitive equi-
libria (see also Shubik, 1959). Thus, without having to specify the precise
rules that govern trade, the core provides a key theoretical foundation for
competitive equilibrium.

But many environments differ considerably from the perfectly competitive
benchmark. Examples include collective-choice problems, such as choosing
the level of a public good, and the matching markets which will be described
in the next section. In the non-cooperative approach to such problems, in-
stitutions are analyzed in detail, and a solution concept such as Nash equi-
librium is applied. The cooperative approach, on the other hand, can make
predictions which are independent of the fine details of institutions. Specif-
ically, if agents have unrestricted contracting ability, then the final outcome
must be stable, for any unstable outcome will be overturned by some coali-
tion that can improve upon it. We will now describe how Shapley and his
colleagues applied this idea to various models of matching.

SExample 1 is an example of a convex game.



3 Theory II: Matching Markets

In many markets, goods are private but indivisible and heterogeneous, and
the traditional assumption of perfect competition cannot be maintained. Im-
portant examples include markets for skilled labor. Since no two workers have
exactly the same characteristics, the market for each particular bundle of la-
bor services can be quite thin. In such markets, the participants must be
appropriately matched in order to trade with each other.

3.1 Two-sided matching

Consider a market with two disjoint sets of agents — such as buyers and sell-
ers, workers and firms, or students and schools — that must be matched with
each other in order to carry out transactions. Such two-sided matching mar-
kets were studied by Gale and Shapley (1962). They ruled out side-payments:
wages (and other match characteristics) are not subject to negotiation.

Stable matchings To be specific, suppose one side of the market consists
of medical students and the other of medical departments. Each department
needs one intern and each medical student wants one internship. A matching
is an assignment of internships to applicants. Naturally, the students have
preferences over departments, and the departments have preferences over
students. We assume for convenience that preferences are strict (i.e., no
ties). A matching is said to be unacceptable to an agent if it is worse than
remaining unmatched.

In general, a matching is stable if no coalition can improve upon it. In this
particular model, a stable matching must satisfy the following two conditions:
(i) no agent finds the matching unacceptable, and (ii) no department-student
pair would prefer to be matched with each other, rather than staying with
their current matches. Condition (i) is an individual rationality condition and
condition (ii) is pairwise stability. The two conditions imply that neither any
singleton coalition, nor any department-student pair, can improve on the
matching. (These are the only coalitions we need to consider in this model.)®

6Gale and Shapley (1962) defined a matching to be stable if no coalition consisting of
one agent from each side of the market could improve on it (i.e., pairwise stability). Given
the special structure of their model, this was equivalent to finding a matching in the core.



The Gale-Shapley algorithm Gale and Shapley (1962) devised a deferred-
acceptance algorithm for finding a stable matching. Agents on one side of the
market, say the medical departments, make offers to agents on the other side,
the medical students. Each student reviews the proposals she receives, holds
on to the one she prefers (assuming it is acceptable), and rejects the rest. A
crucial aspect of this algorithm is that desirable offers are not immediately
accepted, but simply held on to: deferred acceptance. Any department whose
offer is rejected can make a new offer to a different student. The procedure
continues until no department wishes to make another offer, at which time
the students finally accept the proposals they hold.

In this process, each department starts by making its first offer to its
top-ranked applicant, i.e., the medical student it would most like to have as
an intern. If the offer is rejected, it then makes an offer to the applicant it
ranks as number two, etc. Thus, during the operation of the algorithm, the
department’s expectations are lowered as it makes offers to students further
and further down its preference ordering. (Of course, no offers are made to
unacceptable applicants.) Conversely, since students always hold on to the
most desirable offer they have received, and as offers cannot be withdrawn,
each student’s satisfaction is monotonically increasing during the operation of
the algorithm. When the departments’ decreased expectations have become
consistent with the students’ increased aspirations, the algorithm stops.

Example 2 Four medical students (1, 2, 3 and 4) apply for internships in
four medical departments: surgery (S), oncology (O), dermatology (D) and
pediatrics (P). All matches are considered acceptable (i.e., better than re-
maining unmatched). The students have the following preference orderings
over internships:

S=0~=D=P

S=D~0=P

S=0=P>=D

: D~P~0>S

Thus, surgery is the most desirable internship, ranked first by three of the
students. Each medical department needs one intern. They have the following
preference orderings over students:

4 =83=2 =1
4 =182
1>2%4>3
2%=1%4>23

B oo =

SRNESRS
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Internships are allocated using the Gale-Shapley algorithm, with the depart-
ments making proposals to the students. FEach department makes its first
offer to its top-ranked applicant: student 1 gets an internship offer from D,
student 2 gets one from P, and student 4 gets offers from S and O. Student
4 prefers O to S, so she holds on to the offer from O and rejects the offer
from S. In the second round, S offers an internship to student 3. Now each
student holds an internship, and the algorithm stops. The final assignment

is:
1—-D, 2—P, 8-S, 44— 0.

Gale and Shapley (1962) proved that the deferred-acceptance algorithm is
stable, i.e., it always produces a stable matching. To see this, note that in Ex-
ample 2, the algorithm allocates student 2 to her least preferred department,
P, the only one to make her an offer. Now note that departments D, S and O
have been assigned interns they think are preferable to student 2 — this must
be the case, otherwise they would have offered 2 an internship before making
offers to their assigned interns. Thus, even if they could replace their assigned
interns with student 2, they would not want to do so. By this argument, any
department which a student prefers to her assignment will not prefer her to
its assigned intern, so the match is pairwise stable. Individual rationality
holds trivially in Example 2, since there are no unacceptable matches, but it
would hold in general as well, because students would reject all unacceptable
offers, and departments would never make offers to unacceptable applicants.

The case where each department wants one intern corresponds to Gale
and Shapley’s (1962) “marriage” model. The case where departments may
want more than one intern is their “college admissions” model. Gale and
Shapley (1962) showed how the results for the marriage model generalize
to the college admissions model. In particular, a version of the deferred-
acceptance algorithm produces stable matchings even if departments want
to hire more than one intern.”

The algorithm provides an existence proof for this type of two-sided
matching problem: since it always terminates at a stable matching, a sta-
ble matching exists. In fact, more than one stable matching typically exists.
Gale and Shapley (1962) showed that interests are polarized in the sense that

"In the college admissions model, Gale and Shapley (1962) did not formally specify the
employers’ preferences over different sets of employees, but this was done in later work
(see Roth, 1985).
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different stable outcomes favor one or the other side of the market.® This
leads to a delicate issue: for whose benefit is the algorithm operated?

Who gains the most? In Example 2, the final assignment favors the
medical departments more than the students.” In general, the employer-
proposing version of the algorithm, where employers propose matches as in
Example 2, produces an employer-optimal stable matching: all employers
agree it is the best of all possible stable matchings, but all applicants agree
it is the worst. The symmetric applicant-proposing version of the algorithm
instead leads to an applicant-optimal stable matching (which all applicants
agree is the best but all employers agree is the worst). This illustrates how
the applicants’ interests are opposed to those of the employers, and how
stable institutions can be designed to systematically favor one side of the
market.

Example 3 The preferences are as in Example 2, but now the students have
the initiative and make the proposals. Students 1, 2 and 3 start by making
proposals to S, while student 4 makes a proposal to D. Since S prefers student
3, it rejects 1 and 2. In the second round, 1 makes a proposal to O and 2
makes a proposal to D. Since D prefers 2 to 4, it rejects 4. In the third round,
4 proposes to P. Now each department has an intern, and the algorithm stops.
The final assignment is:

1—-0, 2—D, 838—S5, 4—P.

It can be checked that the students strictly prefer this assignment to the as-
signment in Example 2, except for student 3 who is indifferent (she is assigned
to S in both cases). The departments are strictly worse off than in Ezample
2, except for S which gets student 3 in either case.

A “social planner” could conceivably reject both the applicant-optimal
and employer-optimal stable matchings in favor of a stable matching that
satisfies some fairness criterion, or perhaps some version of majority rule

8This insight follows from the more general fact that the set of stable matchings has
the mathematical structure of a lattice (Knuth, 1976).

9Departments P, D and O get their most preferred intern, while S gets the intern it
ranks second. The only student who is assigned to her favorite department is student 3.
Students 1 and 4 are allocated to departments they rank third, while student 2 is assigned
to the department she considers the worst.
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(Gérdenfors, 1975). In practice, however, designs have tended to favor the
applicants. In the context of college admissions, Gale and Shapley (1962)
argued in favor of applicant-optimality based on the philosophy that colleges
exist for the sake of the students, not the other way around.

Incentive compatibility Can the Gale-Shapley algorithm help partici-
pants in real-world markets find stable matchings? An answer to this ques-
tion requires a non-cooperative analysis, that is, a detailed analysis of the
rules that govern the matching process and the incentives for strategic be-
havior, to which we now turn.

Above, the deferred-acceptance algorithm was explained as a decentral-
ized procedure of applications, offers, rejections and acceptances. But in
practice, the algorithm is run by a clearinghouse in a centralized fashion.
Fach applicant submits her preference ordering, i.e., her personal ranking of
the employers from most to least preferred. The employers submit their pref-
erences over the applicants. Based on these submitted preferences, the clear-
inghouse goes through the steps of the algorithm. In the language of mecha-
nism design theory, the clearinghouse runs a revelation mechanism, a kind of
virtual market which does not suffer from the problems experienced by some
real-world markets (as discussed later, these include unraveling and conges-
tion). The revelation mechanism induces a simultaneous-move game, where
all participants submit their preference rankings, given a full understanding
of how the algorithm maps the set of submitted rankings into an allocation.
This simultaneous-move game can be analyzed using non-cooperative game
theory.

A revelation mechanism is (dominant strategy) incentive compatible if
truth-telling is a dominant strategy, so that the participants always find it op-
timal to submit their true preference orderings. The employer-proposing al-
gorithm — viewed as a revelation mechanism — is incentive compatible for the
employers: no employer, or even coalition of employers, can benefit by mis-
representing their preferences (Dubins and Freedman, 1981, Roth, 1982a).°
However, the mechanism is not incentive compatible for the applicants. To
see this, consider the employer-proposing algorithm of Example 2. Suppose
all participants are truthful except student 4, who submits D > P >~ S > O,

10More precisely, no coalition of employers can improve in the strong sense that every
member is made strictly better off (see Roth and Sotomayor, 1990, Chapter 4, for a
discussion of the robustness of this result).
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which is a manipulation or strategic misrepresentation of her true prefer-
ences D = P > O > S. The final matching will be the one that the
applicant-proposing algorithm produced in Example 3, so student 4’s manip-
ulation makes her strictly better off.!! This proves that truth-telling is not
a dominant strategy for the applicants. Indeed, Roth (1982a) proved that
no stable matching mechanism exists for which stating the true preferences
is a dominant strategy for every agent. However, notice that despite student
4’s manipulation, the final matching is stable under the true preferences.
Moreover, it is an undominated Nash equilibrium outcome. This illustrates
a general fact about the Gale-Shapley algorithm, proved by Roth (1984b):
all undominated Nash equilibrium outcomes of the preference manipulation
game are stable for the true preferences.!?

The usefulness of Roth’s (1984b) result is limited by the fact that it may
be difficult for applicants to identify their best responses, as required by the
definition of Nash equilibrium. For example, if student 4 knows that the
other applicants are truthful but not what their true preferences are, then
student 4 will not be able to foresee the events outlined in Footnote 11.
Therefore, she cannot be sure that this particular manipulation is profitable.
This argument suggests that in large and diverse markets, where participants
have very limited information about the preferences of others, the scope for
strategic manipulation may be quite limited. Roth and Rothblum (1999)
verify that when an applicant’s information is sufficiently limited, she cannot
gain by submitting a preference ordering which reverses her true ordering of
two employers. However, it may be profitable for her to pretend that some
acceptable employers are unacceptable.

1 Consider how Example 2 would be different if student 4’s preferences were D = P >~
S = O. Then, when student 4 receives simultaneous offers from O and S, she rejects O.
In the second round, O would make an offer to student 1 who holds an offer from D but
prefers O and therefore rejects D. In the third round, D makes an offer to 2 who holds an
offer from P but prefers D and therefore rejects P. In the fourth round, P makes an offer
to 1 who holds an offer from O and rejects P. In the fifth round, P makes an offer to 4
who holds an offer from S and now rejects S. In the sixth round, S makes an offer to 3.
The algorithm then stops; the final assignment is

1-0, 2—-D, 3—5, 4—P.

121f we believe coalitions can jointly manipulate their reports, we can restrict attention
to undominated Nash equilibria that are strong or rematching proof (Ma, 1995). Roth’s
(1984b) result applies to these refinements as well.
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Roth and Peranson (1999) used computer simulations with randomly gen-
erated data, as well as data from the National Resident Matching Program,
to study the gains from strategic manipulation of a deferred-acceptance algo-
rithm. Their results suggested that in large markets, very few agents on either
side of the market could benefit by manipulating the algorithm. Subsequent
literature has clarified exactly how the gains from strategic manipulation
vanish in large markets (Immorlica and Mahdian, 2005, Kojima and Pathak,
2009).

A related question is the following: if participants have incomplete infor-
mation, does there exist a Bayesian-Nash equilibrium (not necessarily truth-
telling) such that the outcome is always stable for the true preferences? Roth
(1989) proved that this cannot be true for any mechanism, assuming both
sides of the market behave strategically.'®* However, the applicant-proposing
deferred-acceptance mechanism is incentive compatible for the applicants, so
if the employers do not behave strategically, then truthtelling is a Bayesian-
Nash equilibrium which produces a stable matching.'* Even if both sides
of the market are strategic, the lack of incentive-compatibility is less serious
in large markets where, as Roth and Peranson (1999) discovered, the poten-
tial gains from strategic manipulation are limited. Under certain conditions,
truthful reporting by both sides of the market is an approximate equilibrium
for the applicant-proposing deferred-acceptance mechanism in a sufficiently
large market (Kojima and Pathak, 2009).

Adjustable prices and wages Shapley and Shubik (1971) considered a
transferable-utility version of the Gale-Shapley model called the assignment
game. When employers are matched with workers, transferable utility means
that match-specific wages are endogenously adjusted to clear the market.
Shapley and Shubik (1971) showed that the core of the assignment game
is non-empty, and that competition for matches puts strict limits on the set of
core allocations. With transferable utility, any core allocation must involve
a matching which maximizes total surplus. Generically, this matching is

13This negative result applies to all mechanisms, not just revelation mechanisms. How-
ever, Roth’s (1989) proof relies on the revelation principle, which states that without loss
of generality, we can restrict attention to incentive compatible revelation mechanisms.

4The revelation mechanism which selects the applicant-optimal stable matching is
(dominant strategy) incentive compatible for the applicants also in the “college admis-
sions” model, where employers make multiple hires (Roth, 1985a).
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unique. However, wages are not in general uniquely determined, thereby cre-
ating a polarization of interests similar to the Gale-Shapley model. Employer-
optimal and applicant-optimal stable allocations exist and are characterized
by the lowest and highest possible market-clearing wages. The core of the
assignment game captures a notion of free competition reminiscent of tradi-
tional competitive analysis. In fact, in this model there is an exact corre-
spondence between core and competitive equilibria.

Shapley and Shubik (1971) did not provide an algorithm for reaching sta-
ble allocations when utility is transferable, but Crawford and Knoer (1981)
showed that a generalized Gale-Shapley algorithm accomplishes this task
(see also Demange, Gale and Sotomayor, 1986). In the employer-proposing
version, each employer starts by making a low salary offer to its favorite ap-
plicant. Any applicant who receives more than one offer holds on to the most
desirable offer and rejects the rest. Employers whose offers are rejected con-
tinue to make offers, either by raising the salary offer to the same applicant,
or by making an offer to a new applicant. This process always leads to the
employer-optimal stable allocation. Kelso and Crawford (1982) and Roth
(1984c, 1985b) generalized these results still further. Specifically, Kelso and
Crawford (1982) introduced the assumption that employers, who have pref-
erences over sets of workers, consider workers to be substitutes. Under this
assumption, an employer-proposing deferred-acceptance algorithm still pro-
duces the employer-optimal stable allocation, while an applicant-proposing
version produces the applicant-optimal stable allocation (Kelso and Craw-
ford, 1982, Roth, 1984c).

When side-payments are available, the deferred-acceptance algorithm can
be regarded as a simultaneous multi-object English auction, where no object
is allocated until bidding stops on all objects. As long as the objects for sale
are substitutes, this process yields the bidder-optimal core allocation. Roth
and Sotomayor (1990, Part III) discuss the link between matching and auc-
tions, a link which was further strengthened by Hatfield and Milgrom (2005).
Varian (2007) and Edelman, Ostrovsky and Schwarz (2007) showed that the
assignment game provides a natural framework for analyzing auctions used
by Internet search engines to sell space for advertisements.

15Tf employers want to hire more than one worker, the employer-proposing algorithm
lets them make multiple offers at each stage. To see why substitutability is required for
this algorithm to work as intended, note that this assumption guarantees that if an offer
is rejected by a worker, the employer does not want to withdraw any previous offers made
to other workers.
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3.2 One-sided matching

Shapley and Scarf (1974) studied a one-sided market, where a set of traders
exchange indivisible objects (such as plots of land) without the ability to use
side-payments. Each agent initially owns one object. Abdulkadiroglu and
Sonmez (1999) later generalized the model to allow for the possibility that
some agents do not initially own any objects, while some objects have no
initial owner.

Shapley and Scarf (1974) proved that the top-trading cycle algorithm,
which they attributed to David Gale, always produces a stable allocation.
The algorithm works as follows. Starting from the initial endowment, each
agent indicates her most preferred object. This can be described in a “di-
rected graph” indicating, for each agent, whose object this agent would pre-
fer. There must exist at least one “cycle” in the directed graph, i.e., a set
of agents who could all obtain their preferred choices by swapping among
themselves. These swaps occur, and the corresponding agents and objects
are removed from the market. The process is repeated with the remaining
agents and objects, until all objects have been allocated. The algorithm is
illustrated in the following example.

Example 4 There are four agents, 1, 2, 3, and 4, and four objects, A, B,
C, and D. The agents have the following preferences:

1: A-B»~C»D
2: B=A-D>=C
3: A=B»>=D=C
4: D>~C»A>B.

Given two alternative initial endowment structures, Figure 1 indicates the
implied preferences with arrows.
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Initial allocation 1: DCBA Initial allocation 2: ABCD

stage 1 1 2

stage 2

ABCD

ACBD

Figure 1: Top Trading Cycles for different endowment structures.

On the left-hand side of Figure 1 the initial allocation (endowment) is DCBA,
that is, agent 1 owns object D, agent 2 owns object C, etc. In stage 1, agent
1 indicates that her favorite object is owned by 4, while 4 indicates that her
favorite object is owned by 1. Thus, agents 1 and 4 form a cycle. They swap
objects and are removed together with their objects D and A. Now agents 2
and 3 remain, with their endowments C' and B. In the second stage, both
2 and 3 indicate that 3’s object is their favorite among the two objects that
remain. Therefore, the process terminates with the final allocation ACBD.
This allocation s stable: mo coalition of traders can reallocate their initial
endowments to make all members better off. The right-hand side of the fig-
ure shows that, had the initial endowment been ABC D, then no trade would
have occurred.

Roth and Postlewaite (1977) show that if preferences over objects are
strict, and if stability is defined in terms of weak improvements (see Footnote
3), then for any given initial endowment there is a unique stable allocation.
For example, if the initial endowment in Example 4 is DC'BA, then the
coalition consisting of agents 1 and 4 can obtain their favorite objects simply
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by swapping their endowments. Hence, any stable outcome must give A to
1 and D to 4. Object C' cannot be given to agent 3, because she can block
this by refusing to trade. Hence the unique stable allocation is ACBD. In
contrast, when the initial endowment is ABCD, agents 1, 2 and 4 would
block any outcome where they do not obtain their favorite objects (which
they already own), so ABC'D is the only stable allocation.

The revelation mechanism that chooses the unique stable allocation, com-
puted by the top-trading cycle algorithm from submitted preference orderings
and given endowments, is dominant strategy incentive compatible for all par-
ticipants (Roth, 1982b). In fact, this is the only revelation mechanism which
is Pareto efficient, individually rational and incentive compatible (Ma, 1994).

Important real-world allocation problems have been formalized using Shap-
ley and Scarf’s (1974) model. One such problem concerns the allocation of
human organs, which will be discussed in Section 5.3. Another such problem
concerns the allocation of public-school places to children. In the school-
choice problem, no “initial endowments” exist, although some students may
be given priority at certain schools. Abdulkadiroglu and Sénmez (2003)
adapted the top-trading cycle to the school choice problem, but another ap-
proach is to incorporate the schools’ preferences over students via the Gale-
Shapley algorithm. This will be discussed in Section 5.2.

4 Evidence: Markets for Doctors

The work on stable allocations and stable algorithms was recognized as an
important theoretical contribution in the 1960s and 1970s, but it was not
until the early 1980s that its practical relevance was discovered. The key
contribution is Roth (1984a), which documents the evolution of the market
for new doctors in the U.S. and argues convincingly that a stable algorithm
improved the functioning of the market. This work opened the door to Roth’s
participation in actual design, which began in the 1990s. Roth also conducted
empirical studies of other medical markets, documenting and analyzing how
several regions in the U.K. had adopted different algorithms (Roth, 1991a).
These further strengthened the case for stable algorithms. The overall evi-
dence provided by Roth was pivotal.

Centralized matching mechanisms, such as the one in the U.S. market
for new doctors, have well-defined “rules of the game” known to both the
participants themselves and the economists who study the market. Knowl-
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edge of these rules makes it possible to test game-theoretic predictions, in
the field as well as in laboratory experiments. Moreover, the rules can be
redesigned to improve the market functioning (see Section 5). Accordingly,
these types of matching mechanisms have been studied in depth and are by
now well understood. Other markets with clearly defined rules have also been
the subject of intensive studies; the leading example is auction markets. In
fact, matching and auction theory are closely linked, as mentioned above.

We begin this section by describing the U.S. market for new doctors,
and then turn to the U.K. regional medical markets. We also consider how
important evidence regarding the performance of matching algorithms have
been generated using laboratory experiments.

4.1 The U.S. market for new doctors

Roth (1984a) studied the evolution of the U.S. market for new doctors. Stu-
dents who graduate from medical schools in the U.S. are typically employed
as residents (interns) at hospitals, where they comprise a significant part
of the labor force. In the early twentieth century, the market for new doc-
tors was largely decentralized. During the 1940s, competition for medical
students forced hospitals to offer residencies (internships) increasingly early,
sometimes several years before a student would graduate. This so-called
unraveling had many negative consequences. Matches were made before stu-
dents could produce evidence of how qualified they might become, and even
before they knew what kind of medicine they would like to practice. The
market also suffered from congestion: when an offer was rejected, it was of-
ten too late to make other offers. A congested market fails to clear, as not
enough offers can be made in time to ensure mutually beneficial trades. To
be able to make more offers, hospitals imposed strict deadlines which forced
students to make decisions without knowing what other opportunities would
later become available.

Following Roth’s (1984a) study, similar problems of congestion and unrav-
eling were found to plague many markets, including entry-level legal, business
school and medical labor markets in the U.S., Canada and the U.K., the mar-
ket for clinical psychology internships, dental and optometry residencies in
the U.S., and the market for Japanese university graduates (Roth and Xing,
1994). When indivisible and heterogeneous goods are traded, as in these
markets for skilled labor, offers must be made to specific individuals rather
than “to the market”. The problem of coordinating the timing of offers can
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cause a purely decentralized market to become congested and unravel, and
the outcome is unlikely to be stable. Roth and Xing (1994) described how
market institutions have been shaped by such failures, and explained their
findings in a theoretical model (see also Roth and Xing, 1997).

In response to the failures of the U.S. market for new doctors, a centralized
clearinghouse was introduced in the early 1950s. This institution is now called
the National Resident Matching Program (NRMP). The NRMP matched
doctors with hospitals using an algorithm which Roth (1984a) found to be
essentially equivalent to Gale and Shapley’s employer-proposing deferred-
acceptance algorithm. Although participation was voluntary, essentially all
residencies were allocated using this algorithm for several decades. Roth
(1984a) argued that the success of the NRMP was due to the fact that its al-
gorithm produced stable matchings. If the algorithm had produced unstable
matchings, doctors and hospitals would have had an incentive to bypass the
algorithm by forming preferred matches on the side (a doctor could simply
contact her favorite hospitals to inquire whether they would be interested in
hiring her).!®

When a market is successfully designed, many agents are persuaded to
participate, thereby creating a “thick” market with many trading opportuni-
ties. The way in which a lack of stability can create dissatisfaction and reduce
participation rates is illustrated by Example 2. An unstable algorithm might
assign student 1 to pediatrics. But if the dermatology department finds out
that their top-ranked applicant has been assigned to a department she likes
less than dermatology, they would have a legitimate reason for dissatisfaction.
A stable algorithm would not allow this kind of situation. It is thus more
likely to induce a high participation rate, thereby creating many opportuni-
ties for good matches which, in turn, induces an even higher participation
rate. Roth and his colleagues have identified this virtuous cycle in a number
of real-world markets, as well as in controlled laboratory experiments.

16 As in the original Gale and Shapley (1962) model, the only issue considered by the
NRMP is to find a matching. Salaries are determined by employers before residencies are
allocated, so they are treated as exogenous to the matching process. Crawford (2008)
argues that it would be quite feasible to introduce salary flexibility into the matching
process by using a generalized deferred-acceptance algorithm of the type considered by
Crawford and Knoer (1981). See also Bulow and Levin (2006).
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4.2 Regional medical markets in the U.K.

Roth (1990, 1991a) observed that British regional medical markets suffered
from the same kinds of problems in the 1960s that had afflicted the U.S.
medical market in the 1940s. Each region introduced its own matching al-
gorithm. Some were stable, others were not (see Table 1). Specifically, the
clearinghouses in Edinburgh and Cardiff implemented algorithms which were
essentially equivalent to the deferred-acceptance algorithm, and these oper-
ated successfully for decades. On the other hand, Birmingham, Newcastle
and Sheffield quickly abandoned their unstable algorithms.

TABLE I
STABLE AND UNSTABLE (CENTRALIZED) MECHANISMS

Market Stable Still in use (halted unraveling)

American medical markets

NRMP yes yes (new design in "98)

Medical Specialties yes yes (about 30 markets)
British Regional Medical Markets

Edinburgh (°69) yes yes

Cardiff yes yes

Birmingham no no

Edinburgh (‘67) no no

Newcastle no no

Sheffield no no

Cambridge no yes

London Hospital no yes
Other healthcare markets

Dental Residencies yes yes

Osteopaths (<94) no no

Osteopaths (=94) yes yes

Pharmacists yes yes
Other markets and matching processes

Canadian Lawyers yes yes (except in British Columbia

since 1996)

Sororities yes (at equilibrium)  yes

Table 1. Reproduced from Roth (2002, Table 1).

4.3 Experimental evidence

The empirical evidence seems to support the hypothesis that stable match-
ing algorithms can prevent market failure (Roth and Xing, 1994, Roth, 2002,
Niederle, Roth, and Sénmez, 2008). However, many conditions influence the
success or failure of market institutions. The objective of market designers
is to isolate the role of the mechanism itself, and compare the performance
of different mechanisms under the same conditions. But this is difficult to
accomplish in the real world. For example, British regional medical markets
might differ in numerous ways that cannot be controlled by an economist.
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Accordingly, market designers have turned to controlled laboratory experi-
ments to evaluate and compare the performance of mechanisms.

Kagel and Roth (2000) compared the stable (deferred-acceptance) algo-
rithm used in Edinburgh and Cardiff with the unstable “priority-matching”
algorithm used in Newcastle.!” In their experiment, a centralized match-
ing mechanism was made available to the subjects, but they could choose
to match in a decentralized way, without using the mechanism. When the
mechanism used priority matching, the experimental market tended to un-
ravel, and many matches were made outside the mechanism. The deferred-
acceptance mechanism did not suffer from the same kind of unraveling. This
provided experimental evidence in favor of Roth’s hypothesis that the match-
ing algorithm itself and, in particular, its stability, contribute importantly to
the functioning of the market.

Two regions, Cambridge and London Hospital, presented an anomaly for
Roth’s hypothesis. In these regions, the matching algorithms solved a linear
programming problem which did not produce stable outcomes. Yet, these
markets did not appear to unravel, and the unstable mechanisms remained
in use (see Table 1). In experiments, the linear programming mechanisms
seem to perform no better than priority matching, which suggests that con-
ditions specific to Cambridge and London Hospital, rather than the intrinsic
properties of their matching algorithms, may have prevented unraveling there
(Unver, 2005). Roth (1991a) argued that these markets are in fact so small
that social pressures may prevent unraveling.

In one U.S. medical labor market (for gastroenterology), a stable algo-
rithm was abandoned after a shock to the demand and supply of positions.
McKinney, Niederle and Roth’s (2005) laboratory experiments suggested that
this market failed mainly because, while employers knew about the exogenous
shock, the applicants did not. Shocks that both sides of the market knew
about did not seem to cause the same problems. This suggested that the al-
gorithm would fail only under very special conditions. Roth and M. Niederle

1"The unstable algorithms in Birmingham and Sheffield used a similar method as the
Newecastle algorithm. In priority-matching, an applicant’s ranking of an employer and the
employer’s ranking of the applicant jointly determine the applicant’s “priority” at that
employer. Thus, the highest priority matches are those where the two parties rank each
other first. Apart from being unstable, such methods are far from incentive-compatible;
deciding whom to rank first is a difficult strategic problem. A similar problem is discussed
below with regard to the “Boston mechanism” (which itself is a kind of priority-matching
algorithm).

22



helped the American Gastroenterology Association reintroduce a deferred-
acceptance matching algorithm in 2006. Niederle, Proctor and Roth (2008)
describe early evidence in favor of the reintroduced matching mechanism.

5 Market Design

The theory outlined in Sections 2 and 3 and the empirical evidence discussed
in Section 4 allow us to understand the functions that markets perform, the
conditions required for them to be performed successfully, and what can go
wrong if these conditions fail to hold. We now consider how these insights
have been used to improve market functioning. Of course, real-world markets
experience idiosyncratic complications that are absent in theoretical models.
Real-world institutions have to be robust to agents who make mistakes, do
not understand the rules, have different prior beliefs, etc. They should also
be appropriate to the historical and social context and, needless to say, re-
spect legal and ethical constraints on how transactions may be organized.
Given the constraints of history and prevailing social norms, small-scale in-
cremental changes to existing institutions might be preferred to complete
reorganizations.

This section deals with three sets of real-world applications: first, the
market for doctors in the U.S.; second, the design of school-admission pro-
cedures; and third, a case of one-sided matching (kidney exchange).

5.1 Redesigning the market for new doctors

As described in Section 4.1, Roth’s work illuminated why the older, and more
decentralized, system had failed, and why the new (deferred-acceptance) al-
gorithm adopted by the NRMP performed so much better. However, as
described by Roth and Peranson (1999), the changing structure of the med-
ical labor market caused new complexities to arise which led the NRMP to
modify its algorithm. By the 1960s a growing number of married couples
graduated from medical school, and they often tried to bypass the algorithm
by contacting hospitals directly. A couple can be regarded as a composite
agent who wants two jobs in the same geographic location, and whose pref-
erences therefore violate the assumption of substitutability. Roth (1984a)
proved that in a market where some agents are couples, there may not exist
any stable matching. The design of matching and auction mechanisms in the
presence of complementarities is an important topic in the recent literature.
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A need for reform: the Roth-Peranson algorithm In the 1990s, the
very legitimacy of the NRMP algorithm was challenged. Specifically, it was
argued that what was primarily an employer-proposing algorithm favored
hospitals at the expense of students.

Medical-school personnel responsible for advising students about
the job market began to report that many students believed the
NRMP did not function in the best interest of students, and that
students were discussing the possibility of different kinds of strate-
gic behavior (Roth and Peranson, 1999, p. 749).

The basic theory of two-sided matching, outlined in Section 3.1, shows
that the employer-proposing algorithm is not incentive compatible for the
applicants, i.e., it is theoretically possible for them to benefit by strategically
manipulating or “gaming” it. However, the applicant-proposing version is
incentive compatible for the applicants. The complexity of the medical la-
bor market, with complementarities involving both applicants and positions,
means that the basic theory cannot be applied directly. However, computa-
tional experiments show that the theory can provide useful advice even in
this complex environment (Roth and Peranson, 1999). Overall, there seemed
to be strong reasons to switch to an applicant-proposing algorithm.

In 1995, Alvin Roth was hired by the Board of Directors of the NRMP to
direct the design of a new algorithm. The goal of the design was “to construct
an algorithm that would produce stable matchings as favorable as possible
to applicants, while meeting the specific constraints of the medical market”
(Roth and Peranson, 1999, p. 751). The new algorithm, designed by Roth
and Elliott Peranson, is an applicant-proposing algorithm modified to accom-
modate couples: potential instabilities caused by the presence of couples are
resolved sequentially, following the instability-chaining algorithm of Roth and
Vande Vate (1990). Computer simulations suggested that the Roth-Peranson
algorithm would turn out to be somewhat better for the applicants than the
old NRMP employer-proposing algorithm (Roth and Peranson, 1999). The
simulations also revealed that, in practice, it would essentially be impossible
to gain by strategic manipulation of the new algorithm (Roth, 2002).

Since the NRMP adopted the new algorithm in 1997, over 20,000 doctors
per year have been matched by it (Roth and Peranson, 1999, Roth, 2002).
The same design has also been adopted by entry-level labor markets in other
professions (see Table 2). The empirical evidence suggests that the outcome
is stable despite the presence of couples.
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Table 1: Labor markets that adopted the Reth-Peranson clearinghouss design after 1998 (and
date of first use of a centralized clearinghouse of some sort):

= Postdoctoral Dental Residencies in the United States
o Oral and Mazillofacial Surgery (1985)
o General Practice Fesidency {1986)
o Advanced Education in General Dentistry (1986)
o Pediatric Dentistry (1989)
o Orthodontics (19%6)
= Psychology Internships in the United States and Canada (1999
= Neuropsychology Residencies in the T8, and Canada (2001)
= Osteopathic Internships in the United States (before 1995)
® Pharmacy Practice Fesidencies in the United States (before 1994)
= Articling Positions with Law Firms in Alberta, Canada (1993)
=  Medical Residencies in the United States (NRME) (1252)
= Mledical Residencies in Canada (CaRME) (before 1970)
= Specialty Matching Services (3ME/MEME):
o Abdominal Transplant Surgery (2005)
o Child & Adolescent Psychiatry (1993)
o Colon & Rectal Surgery (1984)
o Combined Musculoskeletal Matching Program (CMWWEP)
=  Hand Surgery (1990)
o Medical Bpecialties Matching Program (MSIEP)
Cardiovascular Disease (1986)
Gastroenterology (1986-1999; rejoinedin 2006)
Hematology {2006)
Hematology/Oncology (2006)
Infections Digsease (1986-1990, rejoinedin 19%4)
Oncol ogy (2006)
Pulmonary and Crtical Medicine {1986
=  Eheumatology {2005)
o Minimally Invasive and Gastrointestinal Surgery (2003)
o Obstetrics/Gynecology
»  Feproductive Endocrinclogy {1991}
= Gynecologic Oncology (1953)
= Maternal-Fetal Medicine (1994)
= Female Pelvic Medicine & Reconstructive Surgery (2001)
Ophthalmic FPlastic & Reconstructive Surgery (1991)
Pediatric Cardiology (1999)
Pediatric Critical Care Medicine (2000)
Pediatric Emergency Medicine (1994)
Pediatric Hematology/Oncology (2001)
Pediatric Rhenmatology (2004)
Pediatric Surgery (1992)
Primary Care Sports Medicine (1994)
Eadiology
= Interventional Radiclogy (2002)
= MNewuroradiology {2001)
= Pediatric Radiclogy {2003)
o Burgical Critical Care (2004}
Thoracic SBurgery (1988)
o Wascular Surgery (1985)

O 00000000

[w]

Table 2. Reproduced from Roth (2008a, Table 1).
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5.2 School admission

Many students simply attend the single school where they live. Sometimes,
however, students have potential access to many schools. A matching of
students with schools should take into account the preferences of the students
and their parents, as well as other important concerns (about segregation, for
example). Should schools also be considered strategic agents with preferences
over students? Some schools might prefer students with great attendance
records, others might be mainly concerned about grades, etc. If the schools,
as well as the applicants, are regarded as strategic agents, then a two-sided
matching problem ensues.

In the theoretical models of Balinski and Sénmez (1999) and Abdulka-
diroglu and Sonmez (2003), classroom slots are allocated among a set of
applicants, but the schools are not considered strategic agents. Insights from
two-sided matching models are still helpful, however. An applicant may be
given high priority at some particular school (for example, if she lives close
to the school, has a sibling who attends the school, or has a high score on a
centralized exam). In this case, the school can be said to have preferences
over students, in the sense that higher-priority students are more preferred.
Stability then captures the idea that if student 1 has higher priority than
student 2 at school S, and student 2 attends school S, then student 1 must
attend a school that she likes at least as well as S (perhaps S itself).

An important difference between this model and the two-sided model of
Section 3.1 is that the priority ranking of students can be based on objectively
verifiable criteria. In such instances, the problem of incentive-compatibility
does not necessarily arise on the part of the schools. Moreover, the priority
orderings do not have the same welfare implications as preference order-
ings usually have. These arguments suggest using the applicant-proposing
deferred-acceptance algorithm, which is not only fully incentive compatible
for the applicants, but also applicant optimal (i.e., every applicant prefers
it to any other stable match).!® The New York City public high schools
started using a version of the deferred-acceptance algorithm in 2003, and the
Boston public school system started using a different version in 2005 (Roth,
2008b).1?

18For experimental evidence on school-choice mechanisms, see Chen and Sénmez (2006),
Featherstone and Niederle (2011) and Pais and Pintér (2008).

9The problems the market designers faced in these two markets were somewhat dif-
ferent. In New York, the school-choice system is in effect a two-sided market where the
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Prior to 2003, applicants to New York City public high schools were asked
to rank their five most preferred schools and these preference lists were sent
to the schools. The schools then decided which students to admit, reject,
or wait-list. The process was repeated in two more rounds. Students who
had not been assigned to any school after the third round were assigned
via an administrative process. This process suffered from congestion, as the
applicants did not have sufficient opportunities to express their preferences,
and the schools did not have enough opportunities to make offers. The
market failed to clear: about 30,000 students per year ended up, via the
administrative process, at a school for which they had not expressed any
preference (Abdulkadiroglu, Pathak and Roth, 2005).

Moreover, the process was not incentive-compatible. Schools were more
likely to admit students who ranked them as number one. Therefore, if a
student was unlikely to be admitted to her favorite school, her best strategy
would be to list a more realistic option as her “first choice”. In 2003, Roth
and his colleagues A. Abdulkadiroglu and P.A. Pathak helped re-design this
admissions process. The new system uses an applicant-proposing deferred-
acceptance algorithm, modified to accommodate regulations and customs of
New York City. This algorithm is incentive compatible for the applicants, i.e.,
it is optimal for them to report their preferences truthfully, and congestion
is eliminated. During the first year of the new system, only about 3,000
students had to be matched with schools for which they had not expressed
a preference, a 90 percent reduction compared to previous years.

Prior to 2005, the Boston Public School system (BPS) used a clearing-
house algorithm known as the “Boston mechanism”. This type of algorithm
first tries to match as many applicants as possible with their first-choice
school, then tries to match the remaining applicants with their second-choice
school and so on (Abdulkadiroglu, Pathak, Roth and Sénmez, 2005). Evi-
dently, if an applicant’s favorite school is very difficult to get accepted at,
with this type of mechanism it is best to list a less popular school as the
first choice. This presented the applicants with a vexing strategic situa-
tion: to game the system optimally, they had to identify which schools were
realistic options for them. Applicants who simply reported their true prefer-
ences suffered unnecessarily poor outcomes. Even if, miraculously, everyone
had found a best-response strategy, every Nash equilibrium would have been

schools are active players. In Boston, the schools are passive and priorities are determined
centrally.
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Pareto dominated by the truthful equilibrium of the applicant-proposing
deferred-acceptance mechanism (Ergin and Stnmez, 2006). Roth and his
colleagues, A. Abdulkadiroglu, P.A. Pathak and T. Sonmez, were asked to
provide advice on the design of a new BPS clearinghouse algorithm. In 2005,
an applicant-proposing deferred-acceptance algorithm was adopted. Since it
is incentive-compatible for the applicants, the need for strategizing is elimi-
nated. Other school systems in the U.S. have followed New York and Boston
by adopting similar algorithms; a recent example is the Denver public school
system.?’

5.3 Kidney exchange

In important real-world situations, side-payments are ruled out on legal and
ethical grounds. For example, in most countries it is illegal to exchange
human organs, such as kidneys, for money. Organs have to be assigned to
patients who need transplants by some other method. Some patients may
have a willing kidney donor. For example, a husband may be willing to
donate a kidney to his wife. A direct donation is sometimes ruled out for
medical reasons, such as incompatibility of blood types. Still, if patient A
has a willing (but incompatible) donor A’, and patient B has a willing (but
incompatible) donor B’, then if A is compatible with B" and B with A’, an
exchange is possible: A’ donates to B and B’ to A. Such bilateral kidney
exchanges were performed in the 1990s, although they were rare.

Roth, Sénmez and Unver (2004) noted the similarity between kidney ex-
change and the Shapley-Scarf one-sided matching model described in Section
3.2, especially the version due to Abdulkadiroglu and Sénmez (1999). One
important difference is that, while all objects in the Shapley-Scarf model
can be assigned simultaneously, some kidney patients must be assigned to
a waiting list, in the hope that suitable kidneys become available in the

20Many different kinds of matching procedures are used in various parts of the world.
Braun, Dwenger, Kiibler and Westkamp (2012) describe the two-part procedure that the
German central clearinghouse uses to allocate admission to university medical studies and
related subjects. In the first part, 20 percent of all available university seats are reserved
for applicants with very good grades, and 20 percent for those with the longest waiting
time since completing high school. These seats are allocated using the Boston mechanism.
In the second part, all remaining seats are allocated using a university-proposing deferred-
acceptance algorithm. The authors use laboratory experiments to study the incentives
to strategically manipulate this two-part procedure. More information on matching algo-
rithms in Europe can be found at http://www.matching-in-practice.eu/.
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future.?!’ Roth, Sénmez and Unver (2004) adapted the top-trading cycle
algorithm to allow for waiting-list options. The doctors indicate the most
preferred kidney, or the waiting-list option, for each patient. If there is a
cycle, kidneys are exchanged accordingly. For example, three patient-donor
pairs (A, A"), (B, B’) and (C,C") may form a cycle, resulting in a three-way
exchange (A gets a kidney from B’, B from C’, and C from A’). The rules
allow for “chains” where, for example, A gets a kidney from B’ while B is
assigned a high priority in the waiting list (and another patient can receive a
kidney from A’). Roth, Sénmez and Unver (2004) constructed efficient and
incentive-compatible chain selection rules.

A bilateral exchange between (A, A") and (B, B’) requires a “double co-
incidence of wants”: A’ must have what B needs while B’ must have what
A needs. A clearinghouse with a database of patient-donor pairs that imple-
ments more complex multilateral exchanges can increase market thickness,
i.e., raise the number of possible transplants. This is especially important if
many highly sensitized patients are compatible with only a small number of
donors (Ashlagi and Roth, 2012). However, complex multilateral exchanges
may not be feasible due to logistical constraints. Roth, Sénmez and Unver
(2005b) showed how efficient outcomes with good incentive properties can
be found in computationally efficient ways when only bilateral exchanges are
feasible. But significant gains can be achieved with exchanges involving three
patient-donor pairs (Saidman et al., 2006, Roth, Sénmez, and Unver, 2007).

A number of regional kidney exchange programs in the U.S. have in fact
moved towards more complex exchanges. The New England Program for
Kidney Exchange, founded by Roth, Sésnmez and Unver, in collaboration with
Drs. Frank Delmonico and Susan Saidman, was among the early pioneers
(Roth, Sénmez and Unver, 2005a). Recently, interest has focused on long
chains involving “altruistic donors”, who want to donate a kidney but have no
particular patient in mind. Such chains suffer less from logistical constraints,
because the transplants do not need to be conducted simultaneously (Roth
et al., 2006).

This work on kidney exchange highlights an important aspect of mar-
ket design. Specific applications often uncover novel problems, such as the
NRMP’s couples problem, the priorities of school choice, or the waiting-list

2IThe problem of kidney exchange is inherently more dynamic than the applications
discussed in Sections 5.1 and 5.2. Whereas residencies and public-school places can be
allocated once per year, there is no such obvious timing of kidney exchanges. This has led
to theoretical work on the optimal timing of transactions (Unver, 2010).
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and logistical problems of kidney exchange. These new problems stimulate
new theoretical research, which in turn leads to new applications, etc. Alvin
Roth has made significant contributions to all parts of this iterative process.

6 Other Contributions

6.1 Lloyd Shapley

In non-cooperative game theory, Shapley’s contributions include a number of
innovative studies of dynamic games. Aumann and Shapley’s (1976) perfect
folk theorem shows that any feasible payoff vector (where each player gets at
least the minimum amount he can guarantee for himself) can be supported
as a strategic equilibrium payoff of a repeated game involving very patient
players. The theory of repeated games was generalized by Shapley (1953b),
who introduced the important notion of a stochastic game, where the actions
chosen in one period may change the game to be played in the future. This
has led to an extensive literature (e.g., Mertens and Neyman, 1981). Shapley
(1964) showed that a certain class of learning dynamics may not converge to
an equilibrium point, a result which has stimulated research on learning in
games. Shapley and Shubik (1977) is an important study of strategic market
games.

Lloyd Shapley is the most important researcher in the field of cooper-
ative game theory. Shapley and Shubik (1969) characterized the class of
transferable-utility market games, and showed that such games have non-
empty cores. Shapley (1953a) introduced, and axiomatically characterized,
the main single-valued solution concept for coalitional games with transfer-
able utility, nowadays called the Shapley value. Shapley (1971) proved that
for convex games, the Shapley value occupies a central position in the core.
Harsanyi (1963) and Shapley (1969) extended the Shapley value to games
without transferable utility.

The Shapley value has played a major role in the development of cooper-
ative game theory, with a large variety of applications. Although originally
intended as a prediction of what a player could expect to receive from a
game, it is often given a normative interpretation as an equitable outcome,
for example, when costs are allocated by some administrative procedure (e.g.,
Young, 1994). The book by Aumann and Shapley (1974) contains extensions
of the major justifications, interpretations and computations of the Shapley
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value to games with infinitely many players. This work has important appli-
cations to problems of cost allocation (e.g., Billera, Heath and Raanan, 1978).
The book also contains a version of Edgeworth’s conjecture: in certain large
markets, the Shapley value and the core both coincide with the competitive
equilibrium allocation. The Shapley value for coalitional political games is
known as the Shapley-Shubik power index (Shapley and Shubik, 1954). It
has been used, in particular, to evaluate power shifts caused by changes in
voting systems (e.g., Hosli, 1993).

6.2 Alvin Roth

The book by Roth and Sotomayor (1990) documents the state of two-sided
matching theory three decades ago, including many key results due to Roth
and coauthors. Among his other theoretical contributions, Roth (1977) char-
acterized the Shapley value as a risk-neutral utility function defined on the
space of coalitional games with transferable utility.

Roth (1991b) describes how laboratory experiments and field observations
can interact with game theory, thereby establishing economics as a more sat-
isfactory empirical science. Through his own laboratory experiments, Alvin
Roth has greatly contributed to this research program. In a series of experi-
ments, Roth and his coauthors tested the predictions of cooperative bargain-
ing theory (Roth and Malouf, 1979, Roth, Malouf and Murnighan, 1981, Roth
and Murnighan, 1982, Murnighan, Roth and Schoumaker, 1988). Coopera-
tive bargaining models were found to correctly predict the qualitative effects
of changes in risk aversion. These tests were facilitated by a device of Roth
and Malouf (1979), who controlled for the subject’s inherent risk-aversion
by using lottery tickets as rewards. By varying the information given to a
subject about another subject’s payoffs, the experiments revealed the impor-
tance of focal-point effects and fairness concerns. A series of experiments by
Ochs and Roth (1989) tested the predictions of non-cooperative bargaining
models. This was followed by the important cross-cultural study of Roth,
Prasnikar, Okuno-Fujiwara and Zamir (1991) which investigated bargaining
behavior in four different countries.

Laboratory experiments often reveal that subjects change their behavior
over time. Roth and Erev (1995) developed a reinforcement learning model,
where players tend to repeat choices that produce good outcomes. This model
turned out to be consistent with actual behavior in a number of experimental
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games. Slonim and Roth (1998) used this type of model to explain behavior
in a simple non-cooperative bargaining game, while Erev and Roth (1998)
showed that a reinforcement learning model can predict behavior ex ante
(rather than merely explaining it ex post). This influential series of articles
has shown that the explanatory and predictive power of game theory can be
increased if realistic cognitive limitations are taken into account.

7 Conclusion

Lloyd Shapley has led the development of cooperative game theory. His work
has not only strengthened its theoretical foundations, but also enhanced the
theory’s usefulness for applied work and policy making. In collaboration with
D. Gale, H. Scarf and M. Shubik, he created the theory of matching markets.
Launching the theory, Gale and Shapley (1962) expressed the hope that one
day it would have practical applications. This hope has been fulfilled by the
emerging literature on market design.

The work by Alvin Roth has enhanced our understanding of how markets
work. Using empirical, experimental and theoretical methods, Roth and
his coauthors, including A. Abdulkadiroglu, P.A. Pathak, T. Sénmez and
M.U. Unver, have studied the institutions that improve market performance,
thereby illuminating the need for stability and incentive compatibility. These
contributions led directly to the successful redesign of a number of important
real-world markets.

For further reading An elementary introduction to cooperative game
theory can be found in Moulin (1995), while Shubik (1984) offers a more
advanced treatment. Serrano’s (2009) survey emphasizes the core and the
Shapley value, while Maschler (1992) discusses alternative cooperative solu-
tion concepts. For introductions to matching theory, see Roth and Sotomayor
(1990) or the original article by Gale and Shapley (1962). For general as-
pects of market design, see Roth (2002) and (2008b). Roth (2008a) discusses
the history, theory and practical aspects of deferred-acceptance algorithms.
Sonmez and Unver (2011) provide a detailed technical survey of the design
of matching markets. For the most recent developments in market design,
see Alvin Roth’s blog, http://marketdesigner.blogspot.com/.
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