Fascinated Journeys into Blue Light

Isamu AKASAKI Meijo University and Nagoya University

CONTENTS

- 1. Introduction
- 2. Creation of GaN single crystal with excellent quality
- 3. Development of GaN p-n junction Blue LEDs and Laser diodes
- 4. Summary

1. Introduction 2/20

Blue Light-Emitting Devices (LED, Laser diode)

[A] Energy bandgap Eg:

>2.6 eV (< 480 nm) (Wide bandgap semiconductors)

[B] Energy band structure:

Direct-transition type for conservation of electron momentum

Conservation of energy

1. Introduction 3/20

High-performance Blue LED and Laser diode [1] High-quality single crystal [2] p-n junction

Depletion layer n type p type 6 6 6 6 6 6 6 6 6 6 6 electron hole Electron energy \oplus **Light emission** Eg Applied forward voltage hole **Electric** current p-n junction LED

1. Introduction 4/20

Candidate materials for Blue Light-Emitters in 1960s-'70s

	ZnSe	GaN
[A] Energy gap (Eg)	2.7 eV	3.4 eV
[B] Energy band structure	direct	direct
[1] Crystal growth	straightforward	too difficult
Substrate	GaAs	sapphire
Lattice mismatch	0.26 %	16 %
[2] p-n junction	not realized at that time	
Number of researchers	many	few
Physical & chemical stability	low	high

1. Introduction 5/20

Candidate materials for Blue Light-Emitters in 1960s-'70s

	ZnSe	GaN
[A] Energy gap (Eg)	2.7 eV	3.4 eV
[B] Energy band structure	direct	direct
[1] Crystal growth	straightforward	too difficult
Substrate	GaAs	sapphire
Lattice mismatch	0.26 %	16 %
[2] p-n junction	not realized at that time	
Number of researchers	many	few
Physical & chemical stability	low	high

Chose GaN in 1973 at Matsushita Research Institute Tokyo (MRIT) because of toughness, wider direct Eg, and non-toxicity

1. Introduction 6/20

Started growth of GaN by MBE in 1973, and by HVPE in 1975

GaN MIS Blue LED by HVPE

First as-grown highly n-type cathode

not p-n junction LED

The brightest Blue LED at that time, however,

still weak and high operating voltage

1. Introduction 7/20

Potential of GaN

at MRIT

High-quality tiny crystallites

Surface of GaN grown on sapphire by HVPE (1975-78)

Tiny but high-quality crystallites embedded in HVPE-grown crystals

Recognized the great potential of GaN

Made up my mind to go back to the beginning; i.e.

Crystal Growth in 1978

Crystal growth methods for GaN

Hydride Vapor Phase Epitaxy (HVPE)

H. P. Maruska and J. J. Tietjen: (1969).

GaCl (g) + NH_3 (g) = GaN (s) + HCl (g) + H_2 (g)

Issues: Susceptible to reverse reactions, Too fast growth rate

Molecular Beam Epitaxy (MBE)

I. Akasaki: (1974) (unpublished).

Ga (g) + NH₃ (g) = GaN (s) +
$$\frac{3}{2}$$
H₂ (g)

Issues: Prone to nitrogen deficiency, Slow growth rate (at that time)

Metalorganic Vapor Phase Epitaxy (MOVPE), (MOCVD) H. M. Manasevit et al: (1971).

$$Ga(CH_3)_3(g) + NH_3(g) \longrightarrow GaN(s) + 3CH_4(g)$$

Advantages:

- No reverse reactions
- Easy to control growth rate, alloy (AlGaN, GalnN) composition, and impurity-doping

Decided to adopt MOVPE (1979)

at MRIT

Started anew to MOVPE since 1981 at Nagoya University

Improvements in MOVPE reactor and growth condition (1) (2)

Mixing TMG (TMA) with NH₃ just before the reactor inlet, and (1) High speed gas flow (2) Substrate inclined at a 45-degree angle

Suppressed the convective gas stream, and the adduct formation

Uniform growth, but not specular surface, still poor material quality

Bird-view SEM image by H. Amano Growth on the same substrate

Growth on a highly-mismatched substrate

Homoepitaxy

Lattice matching

Heteroepitaxy

Huge lattice-mismatch

For epitaxial growth, it is considered to be gospel to have a lattice matching: (e. g. Si on Si, GaAs on GaAs)

(3) Innovation in MOVPE growth method (1985)

Low-temperature (LT-) buffer layer

Key technologies:

- (1) Much higher-speed gas flow (425 cm/sec)
- (2) Substrate inclined at a 45-degree angle
- (3) Deposition of thin AIN buffer layer at about 500 °C, before the growth of GaN single crystal at about 1000 °C

Creation of high-quality GaN (1985)

Until 1985

Since the late 1985

GaN grown by HVPE GaN grown by MOVPE

GaN grown by MOVPE using LT-buffer

Many cracks, pits

Rough surface

Dislocations: > 10¹¹ cm⁻²

Free electron conc. >10¹⁹ cm⁻³

Electron mobility: ~20 cm²/V·s

Weak luminescence

Crack-free, pit-free

Specular surface

Dislocations: 108-109 cm⁻²

Free electron conc. < 10¹⁶ cm⁻³

Electron mobility: ~700 cm²/V·s

Intense luminescence

Crystal quality, electrical property, and luminescence property were dramatically improved at the same time

Growth model of GaN using LT-buffer layer

Surface (SEM) images

Growth model

(1) As-deposited LT-AIN buffer layer

Mixture both amorphous & fine crystallites of AIN

K. Hiramatsu

(2) 5 min GaN growth

Lateral growth of GaN dominates

GaN growth

(5) 60 min GaN growth

Direct growth for 60 min. (No LT-buffer)

Growth model

GaN island

Realization of p-type GaN, AlGaN, and GalnN

1986 **Basic Technology**

High-quality GaN using LT-buffer layer (Low residual impurities)

1988 Found greatly enhanced blue emission of Zn doped GaN by electron irradiation

(LEEBI)

H. Amano

1989 Doped Mg using CP₂Mg and electron irradiation

Achieved the first p-type GaN

1991 p-type AlGaN

1995 p-type GalnN

M. Kito

The world's first GaN p-n junction blue LED (1989)

GaN p-n junction Blue LED

Conductivity control of n-type GaN, AIGaN

1986 <u>Basic Technology</u>

High-quality GaN using LT-buffer layer (Low residual impurities)

1989 Doped Si into high-quality
GaN using SiH₄
Achieved conductivity

Achieved conductivity control of n-type GaN

1991 n-type AlGaN

Allowed the use of heterostructure and quantum well in the design of more efficient p-n junction light-emitting structures

GaN-based laser

On the basis of the technologies of LT-buffer layer and p-n junction heterostructures, GaN-based lasers were achieved

4. Summary 18/20

4. Summary 19/20

 While many researchers abandoned the development of GaN Blue LED, I have been fascinated with the research on GaN-based semiconductors, since 1973.

- Through persistent efforts, with the collaboration of Hiroshi Amano, Yasuo Koide, and many students/ coresearchers over many years, we invented highquality GaN single crystal in 1986, and GaN p-n junction Blue LED in 1989.
- GaN-based photonic & electronic devices are environmentally-sound, robust, and energy-saving, which benefit humanity.

Acknowledgements

With the most generous cooperation of

- M. Hashimoto, Y. Ohki, H. Kobayasi, Y. Toyoda, M. Ohshima, N. Mazda
 - Matsushita Research Institute Tokyo, Inc. (1964–1981)
- N. Sawaki, K. Hiramatsu, Y. Koide, H. Amano, M. Kito, T. Kozawa
 - Nagoya University (1981–1992)
- H. Amano, S. Kamiyama, T. Takeuchi, M. Iwaya

Meijo University (1992-)

■ B. Monemar

Linköping and Lund University

■ TOYODA GOSEI CO., LTD, & TOYOTA CENTRAL R&D LABS.,INC. (1987 -)

Supported by

- ☐ MITI Project (Blue LED, 1975–1978)
- ☐ Grants-in-Aid for Scientific Research (MEXT, JSPS) (1981)
- □ JST Project (Blue LED,1987-1990) (Violet laser diode,1993-1999)
- ☐ JSPS Research for the Future Program (1996–2001)
- MEXT High-Tech Research Center Project (1996–2004)