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ABSTRACT

I discuss various direct calculations of the properties of the one-band Hubbard
model on a square lattice and conclude that these properties sufficiently resemble
those of the cuprate superconductors that no more complicated interactions are
necessary to cause high Tc superconductivity.. In particular, I discuss phonon
effects and conclude that these may be effective in reducing Tc and the gap in

electron-doped materials.

The standard preamble for all kinds of papers on theory (or experiment, for
that matter) in the field of high Tc usually contains the phrase “since there is
no consensus on the cause of high Tc superconductivity” or words to that effect,
and often proceeds to justify thereby yet another implausible conjecture as to
some aspect of the phenomenon. Of course one man’s consensus is another man’s
wild disagreement, and you can easily find those who do not agree that there is a
consensus on relativity, the quantum theory, or the Standard Model, by doing a
simple web search. Not, of course , to mention theories of evolution or of the big
bang, which are unpopular in whole states and most legislatures. As a solid stater I
thank my stars that the band theory of solids and the BCS model are such obscure
targets that they do not garner this kind of disapprobation, although each had its
powerful though somewhat irrational opponents in the past-names like Slater and

Wigner, even, for the latter.

I would agree that there is or should be no real agreement as to the cause of
much of the peculiar phenomenology of the cuprates. Each of us would-be experts
has his favorite list of really puzzling questions about them. My own favorites are

the peculiar insensitivity of Tc to disorder, and the strange transport properties
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in the normal state. Another mystery is the role of interlayer interaction effects
in all kinds of ways, although we can now be reasonably certain that they do
not cause superconductivity. Yet it is time , I feel, that it should no longer be
legitimate to doubt the “first cause”, namely the minimal underlying model which
produces, among a bewildering welter of other effects, superconductivity at still
unprecedentedly high temperatures. I can speak with a certain lack of bias on this
matter because the interlayer tunneling theory which I advocated for five years,
and wrote a book about, turns out to be one of those which must be consigned to
the dustbin. (Although before I was wrong, I was right, at least partially, as to the

correct “first cause”.[1])

My confidence is based on two things. First is the rough agreement between a
number of different simulations, extrapolations, and variational calculations, and
the great similarity between these calculations and the actual experimental data,
using a “bare-bones” model for the electrons and their interactions, a model for
which there is much independent verification. The second is the experimental data
themselves, which in many particulars seem to be trying to tell us the nature of

the phenomena.

All of these successful calculations are based on the same simple model for
the underlying physics. This model is the one-band Hubbard model, or, as can
be shown to be essentially equivalent in the appropriate strong-coupling limit, the
t — J model. It is interesting that there seems to be no need to include electron-
phonon coupling; I will discuss the reason and possible effects of the phonons later

in this article. The appropriate Hamiltonian, then is

H =Y (iltlj)ex (@)e() +U Y nli,+)n(, -) (1)

H(t—J) = P (iltlj)ex (i)c(G)P + Y _ J(i)S() * S(j) (2)

Here P is the projection operator which removes double occupancy of any site. (2)

is meaningless without the projection. + and — of course are the spin indices.[2]



The most direct calculations with (2) are the quantum Monte-Carlo simula-
tions of Scalapino and his group[3|, and using a somewhat different method, those
of Sorella and collaborators[4]. There is considerable controversy between these
two groups as to the details of the results; however, what strikes the disinterested
observer such as myself is not these differences but the essential similarity of the
two. The low-temperature phase for low doping is of course antiferromagnetic
((2) reduces to the Heisenberg model in that case) but with increasing doping one
encounters first an inhomogeneous (probably striped) phase and then, at approx-
imately the right temperature and hole density, d-wave superconductivity. The
parameters of (1) or (2) are not arbitrary—experiments of many types give us J,
and ARPES measurements give us a good estimate of the band structure at high
doping, which is t-so that there is only a little freedom to manipulate the various
components of t. There are some confirmatory simulations, particularly on ladder
systems, which again give us a great deal of understanding of why d-wave super-
conductivity arises; there are also strong indications of a pseudogap phenomenon
in the appropriate place. I am no real expert on this extremely tricky field, and in
fact have been a pessimist about its ability to arrive at any decisive results, but at
this point I have to confess myself impressed. Of course, the trouble with direct
calculations is both that they do not really lead to deep understanding, nor can
they say much about such things as excitation spectra and transport properties,
but what they can say is: when you start out with this physics, you end up with
the observed results. I am not at all an expert in the rather involved and sub-
tle reasoning that goes into these calculations, so will not present them in detail,
but there is no question that these are the most extensive direct calculations in

existence.

A second approach has been taken by Randeria and Trivedi[5], by Masao
Ogata[6], and to some extent by Sorella’s group. This is to take seriously the
original ansatz of the RVB theory that the ground state wave function could be
approximated by Gutzwiller projection of an appropriate product wave function of

BCS type, and to determine variationally the energy gap and the chemical poten-



tial of the wave function to be projected (which, they point out, need not be the
physical chemical potential) by calculating the energy and varying it. The Ran- .
deria group also improves the wave function somewhat by Monte Carlo methods.
Again, as before the results resemble very strongly the experimental data insofar
as these can be determined from the calculation; in particular, the prediction of d-
wave superconductivity for an adequately doped sample is very robust. Ogata finds
that for underdoped concentrations he can find mixtures of antiferromagnetism and

superconductivity, as is observed in some cases.

There is still a third method of direct calculation which has been applied,
starting with early work by Georges and Yedidia[7], and carried to an amazing
degree of refinement by Bill Putikka[8] in recent years. This is direct expansion
of the power series in 1/T for the partition function, and extrapolation of the
results with Pade approximants. This method has played a great role in the past
in estimating critical behavior near phase transitions, but hasn’t previously been
much used in quantum many-body systems. It has been very useful in disposing of
red herrings which have appeared in various mean field approximations—showing
that the ¢t —J Hamiltonian does not lead to phase separation until J is unphysically
large, for instance; and also identifying the very large U, low doping “Nagaoka”
ferromagnetic region. But recently Puttika has carried his series out to ten to
twelve orders and has been able to calculate n(k) with sufficient accuracy to spot
the disappearance of the Fermi surface near the (7, 0) point which is characteristic
of the pseudogap regime. The agreement of his results with those of ARPES at

the same energy resolution is remarkable.

The model is of course not the real substance. Why does it (the model) work
so well? In the first place, the question of layer interactions: these are remarkably
weak, which we can take as an empirical fact on the basis that the Tl one-layer
cuprate is experimentally seen to exhibit all the phenomena that the others do,
though proven conclusively by Moler et. al[9] to have very weak interlayer inter-
action. The same may be said about the gate-doped CaCuO2 sample of Kloc,

Schon et. al,[10] where there is only one doped layer, but perhaps total acceptance



of these results should await confirmation on more samples and in other laborato-
ries. The simplification to the simple one-band Hubbard model is often justified
by the discussion of Zhang and Rice, which is more or less correct, but I prefer the
use of projective canonical transformations a la O K Anderson[11]; and actually
the strongest argument was the very early exact calculations on small clusters by
Michael Schluter et al[12] who showed that an effective one-band Hubbard model

worked very well indeed.

There are two physical aspects which are not in the model and could be im-
portant. One is long-range Coulomb forces—one assumes effective screening as in a
normal metal, and the only real justification is that it works. Some experimental
data bear on this: we have good data on interlayer plasmons which show that the
c-axis is a fairly insulating direction, actually, (except for supercurrents) but as far
as we can see the intralayer plasmons are indeed high-frequency and may screen

reasonably well.

The question which keeps coming up is phonons: why are there almost no
relevant phonon phenomena? The answer to this, I would speculate, is two-fold.
I believe that it is almost on the level of the calculational results above that the
nature of the pseudogap is that it is a pairing phenomenon in the spin sector—i
e, that the pseudogap region can be seen as an RVB with d-wave pairing. But
the spin sector is not coupled to phonons in lowest order, because a displacement
of the local potential does not break the spin degeneracy. In the second term of
(2) the electron-phonon interaction couples only to J. It is worth confirming this
experimentally, but it is known that in heavy-electron materials the Kondo spins
do not couple to phonons. Therefore, the pseudogap is not affected one way or
another by phonons (or ordinary impurities) In the point of view that I have called
“RVB redux”[13] the superconducting gap is caused by the kinetic energy cost of
the opening of the pseudogap, which can only be restored by pair hopping via the
anomalous “josephson” terms in the kinetic energy; thus at least for the higher

doping regime the SC gap follows the pseudogap.



This is rather. a speculative argument, and I am going immediately to say that
in fact there are phonon effects on Tc. For most phonons these are reasonably
small because, as has been exhaustively proven for ordinary superconductors, the
electron-electron interaction due to phonons is very local and acts primarily be-
tween Wannier functions on the same site. In our Hubbard model, it acts simply
as a modulation of U. But of course the reason why we have a d-wave is that it
has zero amplitude at the origin and hence avoids the repulsive U, and neither U
nor phonons are effective. But I think there is one phonon which can be expected
to couple rather strongly to our d-electrons, and much more strongly to electrons
than to holes (note that in our projective theory (2) there is no particle-hole sym-
metry.) This is the phonon which represents the Jahn-Teller displacement which
breaks the dy2_,2 vs d,2 degeneracy (see Fig 1). An electron site has no (z2 — y?)
hole and thus tends to relax the Jahn-Teller distortion, while a hole site sirriply
adds to the distortion a little. As is easily seen from the figure, the phonon which
couples best is at wave vector 7,7 and hence couples the peaks in the gap function
7,0— > 0,7 This phonon has been the subject of considerable discussion recently
but rather off the point. What it will do is to cause a repulsive interaction for the
d-wave gap and hence lower the superconducting Tc for electrons relative to holes.,
an effect which is observed but has seemed rather puzzling. It is noteworthy that
in a couple of recent measurements (see, for instance, [10]) the pseudogap and T*
are about the same for electron and hole dopings at the same level, but T; is much
reduced.

In fact, if the effect is rather localized in k-space we might expect the two
gaps to behave as in Fig. 2, with the 7,0 peak depressed for the SC gap relative
to the general point along the Fermi surface. This seems to explain the ARPES
observations that the peak of the gap function is not at the 0,7 points but rather
there is a local minimum there, as we have sketched in Fig. 2 (not, of course, to

scale)

One implication of this picture is that we would expect an isotope effect for

the electron-doped materials, but a negative one. A crude calculation, assuming



without any justification that the BCS gap equation is valid, would suggest

d(InTe)[0(én fopt) = —p/(J — p) (3)

where fopt is the optical phonon frequency, x4 the phonon coupling constant, and
J the effective antiferromagnetic exchange . (3) might be valid in the overdoped
regime. For reasons mentioned but not emphasized in my book, (which include a
great deal of experience) I am not very convinced of the accuracy or relevance of
isotope effect measurements, but perhaps the gate-doping possibility, which avoids

the necessity of making a new sample for every measurement, is a new opportunity.

In conclusion, my point here is that there is a great deal of consensus on the
model which underlies high T, cuprate superconductivity, and there ought to be
more: I think we have proved our point. But there is much more to be done and

specifically, for instance, we are so far unable to give a closed-form gap equation.
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FIGURE CAPTIONS

(1) The phonon which is likely to interact strongly with electrons around the
0, points. Its displacements are those of the Jahn-Teller distortion caused by an

2%~y hole, so that it might be expected to be particularly soft for electron doping.

(2) The reduction in the superconducting gap which might result from the

repulsive interaction caused by the optical phonon of Fig. 1.
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