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1. Introduction
When we think of atoms, we have a clear picture in our minds: a central nucleus
and a swarm of electrons surrounding it. We conceive them as small objects of
sizes measured in Angstroms (~l0-8 cm); and we know that some hundred
different species of them exist. This picture is, of course, quantified and made
precise in modern quantum theory. And the success of the entire theory may be
traced to two basic facts: first, the Bohr radius of the ground state of the hydrogen
atom, namely,

(1)

where h is Planck’s constant, m is the mass of the electron and e is its charge,
provides a correct measure of atomic dimensions; and second, the reciprocal of
Sommerfeld’s fine-structure constant,

(2)

gives the maximum positive charge of the central nucleus that will allow a stable
electron-orbit around it. This maximum charge for the central nucleus arises
from the effects of special relativity on the motions of the orbiting electrons.

We now ask: can we understand the basic facts concerning stars as simply as
we understand atoms in terms of the two combinations of natural constants (1)
and (2). In this lecture, I shall attempt to show that in a limited sense we can.

The most important fact concerning a star is its mass. It is measured in units
of the mass of the sun,  which is 2 x 1033 gm: stars with masses very much less
than, or very much more than, the mass of the sun are relatively infrequent. The
current theories of stellar structure and stellar evolution derive their successes
largely from the fact that the following combination of the dimensions of a mass
provides a correct measure of stellar masses:

where G is the constant of gravitation and H is the mass of the hydrogen atom.
In the first half of the lecture, I shall essentially be concerned with the question:
how does this come about?
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2. The role of radiation pressure
A central fact concerning normal stars is the role which radiation pressure plays
as a factor in their hydrostatic equilibrium. Precisely the equation governing
the hydrostatic equilibrium of a star is

where P denotes the total pressure, p the density, and M (r) is the mass interior
to a sphere of radius r. There are two contributions to the total pressure P:

that due to the material and that due to the radiation. On the assumption that
the matter is in the state of a perfect gas in the classical Maxwellian sense,
the material or the gas pressure is given by

where T is the absolute temperature, k is the Boltzmann constant, and µ is
the mean molecular weight (which under normal stellar conditions is  1.0).
The pressure due to radiation is given by

where α denotes Stefan’s radiation-constant. Consequently, if radiation
contributes a fraction (1−β ) to the total pressure, we may write

1 1
 l - j 3 3

 = 

To bring out explicitly the role of the radiation pressure in the equilibrium
of a star, we may eliminate the temperature, T, from the foregoing equations
and express P in terms of p and β instead of in terms of p and T. We find:

and

(9)

The importance of this ratio, (1−β), for the theory of stellar structure was
first emphasized by Eddington. Indeed, he related it, in a famous passage in
his book on The Internal Constitution of the Stars, to the ‘happening of the stars’.1

A more rational version of Eddington’s argument which, at the same time,
isolates the combination (3) of the natural constants is the following:

There is a general theorem2 which states that the pressure,  at the centre
of a star of a mass M in hydrostatic equilibrium in which the density, p (r), at
a point at a radial distance, r, from the centre does not exceed the mean density,
 (r), interior to the same point r, must satisfy the inequality,
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Fig. 1. A comparison of an inhomogeneous distribution of density in a star (b) with the two
homogeneous configurations with the constant density equal to the mean density (a) and equal to
the density at the centre (c).

where  denotes the mean density of the star and  its density at the centre.
The content of the theorem is no more than the assertion that the actual pressure
at the centre of a star must be intermediate between those at the centres of the
two configurations ofuniform density, one at a density equal to the mean density
of the star, and the other at a density equal to the density pC at the centre (see
Fig. 1). If the inequality (10) should be violated then there must, in general,
be some regions in which adverse density gradients must prevail; and this implies
instability. In other words, we may consider conformity with the inequality (10)
as equivalent to the condition for the stable existence of stars.

The right-hand side of the inequality (10) together with P given by equation
(9), yields, for the stable existence of stars, the condition,

or, equivalently,

(12)

where in the foregoing inequalities,  is a value of β at the centre of the star.
Now Stefan’s constant, a, by virtue of Planck’s law, has the value

(13)

Inserting this value a in the inequality (12) we obtain

(14)

We observe that the inequality (14) has isolated the combination (3) of
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natural constants of the dimensions of a mass; by inserting its numerical value
given in equation (3) we obtain the inequality,

≥ (15)

This inequality provides an upper limit to (1  for a star of a given mass. Thus,

(16 )

where (1  is uniquely determined by the mass M of the star and the mean
molecular weight, µ, by the quartic equation,

 = 5.48 (17)

In Table 1, we list the values of 1  for several values of µ2 M. From this
table it follows in particular, that for a star of solar mass with a mean molecular
weight equal to 1, the radiation pressure at the centre cannot exceed 3 percent
of the total pressure.

Table 1
The maximum radiation pressure, (1 

at the centre of a star of a given mass, M.

1 1 
0.01 0.56 0.50 15.49

.03 1.01 .60 26.52

.10 2.14 .70 50.92

.20 3.83 .80 122.5

.30 6.12 .85 224.4
0.40 9.62 0.90 519.6

What do we conclude from the foregoing calculation? We conclude that to the
extent equation (17) is at the base of the equilibrium of actual stars, to that
extent the combination of natural constants (3), providing a mass of proper
magnitude for the measurement of stellar masses, is at the base of a physical
theory of stellar structure.

3. Do stars have enough energy to cool?
The same combination of natural constants (3) emerged soon afterward in a
much more fundamental context of resolving a paradox Eddington had
formulated in the form of an aphorism: ‘a star will need energy to cool.’ The
paradox arose while considering the ultimate fate of a gaseous star in the light
of the then new knowledge that white-dwarf stars, such as the companion of
Sirius, exist, which have mean densities in the range l05-l07 gm cm-3. AS

Eddington stated3



I do not see how a star which has once got into
this compressed state is ever going to get out of it...
It would seem that the star will be in an awkward pre-
dicament when its supply of subatomic energy fails.

The paradox posed by Eddington was reformulated in clearer physical terms
by R. H. Fowler.4 His formulation was the following:

The stellar material, in the white-dwarf state,
will have radiated so much energy that it has less en-
ergy than the same matter in normal atoms expanded at
the absolute zero of temperature. If part of it were
removed from the star and the pressure taken off, what
could it do?

Quantitatively, Fowler’s question arises in this way.
An estimate of the electrostatic energy,  per unit volume of an assembly

of atoms, of atomic number Z, ionized down to bare nuclei, is given by

E v =  l . 3 2 x 1 01 1Z 2p 4 / 3 ,

(18)

while the kinetic energy ofthermal motions,  per unit volume of free particles
in the form of a perfect gas of density, p, and temperature, T, is given by

 T (19)

Now if such matter were released of the pressure to which it is subject, it can
resume a state of ordinary normal atoms only if

(20)

or, according to equations ( 18) and (19), only if

p <

This inequality will be clearly violated if the density is sufficiently high. This
is the essence of Eddington’s paradox as formulated by Fowler. And Fowler
resolved this paradox in 1926 in a paper’ entitled ‘Dense Matter’ - one of the
great landmark papers in the realm ofstellar structure: in it the notions of Fermi
statistics and of electron degeneracy are introduced for the first time.

4. Fowler’s  resolution of  Eddington’s paradox; the degeneracy of the electrons in white-
dwarf stars

In a completely degenerate electron gas all available parts of the phase space,
with momenta less than a certain ‘threshold’  - the Fermi ‘threshold’ -
are occupied consistently with the Pauli exclusion-principle i.e., with two
electrons per ‘cell’ of volume h3 of the six-dimensional phase space. Therefore,
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 denotes the number of electrons, per unit volume, 
then the assumption-of complete degeneracy is equivalent to the assertion,

(22)

The value of the threshold momentum  is determined by the normalization
condition

(23)

where n denotes the total number of electrons per unit volume.
For the distribution given by (22),  the pressure P and the kinetic energy

 of the electrons (per unit volume), are given by

and

(24)

where  and  are the velocity and the kinetic energy of an electron having a
momentum 

If we set

(26)

appropriate for non-relativistic mechanics, in equations (24) and (25), we find

and

(27)

(28)

Fowler’s resolution of Eddington’s paradox consists in this: at the temperatures
and densities that may be expected to prevail in the interiors of the white-dwarf
stars,  the electrons will  be highly degenerate and  must be evaluated in
accordance with equation (28) and not in accordance with equation (19); and
equation (28) gives,

(29)

Comparing now the two estimates (18) and (29), we see that, for matter of the
density occurring in the white dwarfs, namely  105 gm cm-3, the total kinetic
energy is about two to four times the negative potential-energy; and Eddington’s
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paradox does not arise. Fowler concluded his paper with the following highly
perceptive statement:

The black-dwarf material is best likened to a single gigantic molecule in
its lowest quantum state. On the Fermi-Dirac statistics, its high density
can be achieved in one and only one way, in virtue of a correspondingly
great energy content. But this energy can no more be expended in radiation
than the energy of a normal atom or molecule. The only difference between
black-dwarf matter and a normal molecule is that the molecule can exist in
a free state while the black-dwarf matter can only so exist under very high
external pressure.

5. The theory of the white-dwarf stars; the limiting mass
The internal energy (= 3 P/2) of a degenerate electron gas that is associated with
a pressure P is zero-point energy; and the essential content of Fowler’s paper is that
this zero-point energy is so great that we may expect a star to eventually settle
down to a state in which all of its energy is of this kind. Fowler’s argument can
be more explicitly formulated in the following manner.5

According to the expression for the pressure given by equation (27),  we
have the relation,

(30)

where  is the mean molecular weight per electron. An equilibrium configura-
tion in which the pressure, P, and the density  are related in the manner,

(31)

is an Emden polytrope of index n. The degenerate configurations built on the
equation of state (30) are therefore polytropes of index 3/2; and the theory of
polytropes immediately provides the relation,

(32)

or, numerically, for K 1 given by equation (30),

For a mass equal to the solar mass and  = 2, the relation (33) predicts R
= 1.26 x  and a mean density of 7.0 x l05 g m / c m3. These values are
precisely of the order of the radii and mean densities encountered in white-
dwarf stars. Moreover, according to equations (32) and (33), the radius of the
white-dwarf configuration is inversely proportional to the cube root of the mass.
On this account, finite equilibrium configurations are predicted for all masses.
And it came to be accepted that the white-dwarfs represent the last stages in
the evolution of all stars.
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But it soon became clear that the foregoing simple theory based on Fowler’s
premises required modifications. For the electrons, at their threshold energies
at the centres of the degenerate stars, begin to have velocities comparable to that
of light as the mass increases. Thus, already for a degenerate star of solar mass
( w i t h pe = 2) the central density (which is about six times the mean density) is
4.19 x 106 g m / c m3; and this density corresponds to a threshold momentum

 = 1.29 mc and a velocity which is 0.63 c. Consequently, the equation of state
must be modified to take into account the effects of special relativity. And this
is easily done by inserting in equations (24) and (25) the relations,

(34)

in place of the non-relativistic relations (26). We find that the resulting equation
of state can be expressed, parametrically, in the form

(35)

(36)

and

(37)

And similarly

where
(38)

(39)

According to equations (35) and (36), the pressure approximates the relation
(30) for low enough electron concentrations  but for increasing electron
concentrations  the pressure tends to6

(40)

This l imiting form of relation can be obtained very simply by setting  = c
in equation (24); then

(41)

and the elimination  with the aid of equation (23) directly leads to equation

(40).
While the modification of the equation of state required by the special
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theory of relativity appears harmless enough, it has, as we shall presently show,
a  dramat i c  e f fec t  on  the  predic ted  mass - radius  re la t ion  for  degenera te
configurations.
The relation between P and  corresponding to the limiting form (41) is

In this limit, the configuration is an Emden polytrope of index 3. And it is well
known that when the polytropic index is 3, the mass of the resulting equilibrium
configuration is uniquely determined by the constant of proportionality,  in
the pressure-density relation. We have accordingly,

(43)

(In equation (43),  2.018 is  a numerical  constant derived from the explicit
solution of the Lane-Emden equation for n = 3.)

It is clear from general considerations’ that the exact mass-radius relation for the
degenerate configurations must provide an upper limit to the mass of such configurations given
by equation (43); and further, that the mean density of the configuration must tend to
infinity, whi le  the  rad ius  t ends  to  zero ,  and   These  condi t ions ,
straightforward as they are, can be established directly by considering the
equilibrium of configurations built  on the exact equation of state given by
equations (35) - (37). It is found that the equation governing the equilibrium of
such configurations can be reduced to the form 8,9

(44)

where

(45)

and  denotes the threshold momentum of the electrons at the centre of the
configuration and  measures the radial distance in the unit

(46)

By in tegra t ing  equat ion  (44 ) , wi th  su i tab le  boundary  condi t ions  and  for
various initially prescribed values  we can derive the exact mass-radius
re la t ion ,  as  wel l  as  the  o ther  equi l ibr ium proper t i es ,  o f  the  degenera te
configurations.  The principal results of such calculations are i l lustrated in
Figures 2 and 3.

The important conclusions which follow from the foregoing considerations
are: first, there is an upper limit,  to the mass of stars which can become
degenerate configurations, as the last stage in their evolution; and second, that
s t a r s  w i t h  M >  must have end states which cannot be predicted from
the considerations we have presented so far. And finally, we observe that the
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Fi g.  2.  T h e  f ull-li n e  c ur v e  r e pr es e nts  t h e  e x a ct  ( m ass-r a di us)-r el ati o n (l1 , is  d efi n e d  i n  e q u ati o n  ( 4 6)

a n d M 3 d e n ot es  t h e  li miti n g  m ass).  T his  c ur v e  t e n ds  as y m pt oti c all y  t o  t h e  ----  c ur v e  a p pr o pri at e

t o  t h e  l o w- m ass  d e g e n er at e  c o nfi g ur ati o ns,  a p pr o xi m at e d  b y  p ol ytr o p es  of  i n d e x  3/ 2.  T h e  r e gi o ns  of

t h e  c o nfi g ur ati o ns  w hi c h  m a y  b e  c o nsi d er e d  as  r el ati visti c   ar e  s h o w n  s h a d e d.  ( Fr o m

C h a n dr as e k h ar, S., M o n. N ot. R o y. A st r. S o c., 9 5, 2 0 7 ( 1 9 3 5).)

c o m bi n ati o n  of  t h e  n at u r al  c o n st a nt  ( 3)  n o w  e m e r g e s  i n  t h e  f u n d a m e nt al

c o nt e xt  of  M li mit gi v e n  b y  e q u ati o n  ( 4 3):  it s  si g nifi c a n c e  f o r  t h e  t h e o r y  of  st ell a r

st r u ct u r e  a n d  st ell a r  e v ol uti o n  c a n  n o  l o n g e r  b e  d o u bt e d.

6.  U n d e r  w h at  c o n diti o n s  c a n  n o r m al  st a r s  d e v el o p  d e g e n e r at e  c o r e s ?

O n c e  t h e  u p p e r  li mit  t o  t h e  m a s s  of  c o m pl et el y  d e g e n e r at e  c o nfi g u r ati o n s  h a d

b e e n  e st a bli s h e d,  t h e  q u e sti o n  t h at  r e q ui r e d  t o  b e  r e s ol v e d  w a s  h o w  t o  r el at e  it s

e xi st e n c e t o t h e e v ol uti o n of st a r s f r o m t h ei r g a s e o u s st at e. If a st a r h a s a m a s s l e s s

t h a n  Mli mit t h e  a s s u m pti o n  t h at  it  will  e v e nt u all y  e v ol v et o w a r d s  t h e  c o m pl et el y

d e g e n e r at e  st at e  a p p e a r s  r e a s o n a bl e.  B ut  w h at  if  it s  m a s s  i s  g r e at e r  t h a n M li mit?
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Fig. 3. The full-line curve represents the exact (mass-density)-relation for the highly collapsed
configurations. This curve tends asymptotically to the dotted curve as  (From Chandrasek-
har, S., Mon. Not. Roy. Astr. Soc., 95, 207 (1935).)

Clues as to what might ensue were sought in terms of the equations and
inequalities of  and 3.10,11

The first question that had to be resolved concerns the circumstances under
which a star, initially gaseous, will develop degenerate cores. From the physical
side, the question, when departures from the perfect-gas equation of state (5) will
set in and the effects of electron degeneracy will be manifested, can be readily
answered.

Suppose, for example, that we continually and steadily increase the density,
at constant temperature, of an assembly of free electrons and atomic nuclei,
in a highly ionized state and initially in the form of a perfect gas governed by the
equation of state (5). At first the electron pressure will increase linearly with p;
but soon departures will set in and eventually the density will increase in
accordance with the equation of state that describes the fully degenerate
electron-gas (see Fig. 4). The remarkable fact is that this limiting form of the
equation of state is independent of temperature.

However, to examine the circumstances when, during the course of evolution,
a star will develop degenerate cores, it is more convenient to express the
electron pressure (as given by the classical perfect-gas equation of state) in
terms of p and  in the manner (cf. equation (7)).

where  now denotes the electron pressure. Then, analogous to equation (9),
we can write

(48)
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Fig. 4. Illustrating how by increasing the density at constant temperature degeneracy always sets
in.

Comparing this with equation (42), we conclude that if

(49)

the  given by the classical perfect-gas equation of state will be greater
than that given by the equation if degeneracy were to prevail, not only for the
prescribed  and T, but for all  and T having the same 

Inserting for a its value given in equation (13), we find that the inequality
(49) reduces to

or equivalently,

(See Fig. 5)

(50)

(51)
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Fig. 5. Illustrating the onset of degeneracy for increasing density at constant β. Notice that there
are no intersections for β> 0.09212. In the figure, 1−β is converted into mass of a star built on the
standard model.

For our present purposes, the principal content of the inequality (51) is the
criterion that for a star to develop degeneracy, it is necessary that the radiation
pressure be less than 9.2 percent of  This last inference is so central
to all current schemes of stellar evolution that the directness and the simplicity
of the early arguments are worth repeating.

The two principal elements of the early arguments were these: first , that
radiation pressure becomes increasingly dominant as the mass of the star
increases; and second , that the degeneracy of electrons is possible only so long as
the radiation pressure is not a significant fraction of the total pressure -
indeed, as we have seen, it must not exceed 9.2 percent of  The
second of these elements in the arguments is a direct and an elementary con-
sequence of the physics of degeneracy; but the first requires some amplification.

That radiation pressure must play an increasingly dominant role as the mass
of the star increases is one of the earliest results in the study of stellar structure
that was established by Eddington. A quantitative expression for this fact is
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given by Eddington’s standard model  which lay at the base of early studies
summarized in his The Internal Constitution of the Stars.

On the standard model, the fraction  (= gas pressure/total pressure) is a
constant through a star. On this assumption, the star is a polytrope of index
3 as is apparent from equation (9); and, in consequence, we have the relation (cf.
equation (43))

(52)

where C  is defined in equation (9). Equation (52) provides a quartic equation
for  analogous to equation (17) for  Equation (52) for  =  gives

(53)

On the standard model, then stars with masses exceeding M will have radiation
pressures which exceed 9.2 percent of the total pressure. Consequently stars with
M > M cannot,  at  any stage during the course of their evolution, develop
degeneracy in their interiors. Therefore, for such stars an eventual white-dwarf
state is not possible unless they are able to eject a substantial fraction of their
mass.

The standard model is, of course, only a model. Nevertheless, except under
special  circumstances,  briefly noted below, experience has confirmed the
standard model, namely that the evolution of stars of masses exceeding 7-8 
must proceed along lines very different from those of less massive stars. These
conclusions,  which were arrived at some fifty years ago, appeared then so
convincing that assertions such as these were made with confidence:

Given an enclosure containing electrons and atomic nuclei (total charge
zero) what happens if we go on compressing the material indefinitely?
( 1 9 3 2 )1 0

The life history of a star of small mass must be essentially different from
the life history of a star of large mass. For a star of small mass the natural
white-dwarf stage is an initial step towards complete extinction. A star of
large mass cannot pass into the white-dwarfstage and one is left speculating
on other possibilities. (1934)8

And these statements have retained their validity.
While the evolution of the massive stars was thus left uncertain, there was no

such uncertainty regarding the final states of stars of sufficiently low mass.”
The reason is that by virtue, again, of the inequality (10), the maximum central
pressure attainable in a star must be less than that provided by the degenerate
equation of state, so long as

or, equivalently

(54)

(55)
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We conclude that there can be no surprises in the evolution of stars of mass
less than 0.43  = 2). The end stage in the evolution of such stars can
only be that of the white dwarfs. (Parenthetically, we may note here that the
inequality (55) implies that the so-called ‘mini’ black-holes of mass  1015 g m
cannot naturally be formed in the present astronomical universe.)

7. Some brief remarks on recent progress in the evolution of massive stars and the onset
of gravitational collapse
It became clear, already from the early considerations, that the inability of the
mass ive  s ta rs  to  became  whi te  dwar fs  must  resu l t  in  the  deve lopment  o f
much more extreme conditions in their interiors and, eventually, in the onset of
gravitational collapse attended by the super-nova phenomenon. But the precise
manner in which all this will happen has been difficult to ascertain in spite of
great effort by several competent groups of investigators. The facts which must
be taken into account appear to be the following.*

In the first instance, the density and the temperature will steadily increase
without the inhibiting effect of degeneracy since for the massive stars considered
1  1  On this account,  ‘nuclear ignition’ of carbon, say, will  take
place which will  be attended by the emission of neutrinos.  This emission of
neutrinos will effect a cooling and a lowering of (1  but it will still be in
excess of  The important point here is that the emission of neutrinos acts
selectively in the central regions and is the cause of the lowering of (1 
in these regions. The density and the temperature will continue to increase till
the next ignition of neon takes place followed by further emission of neutrinos
and a further lowering of (1 T his succession of nuclear ignitions and
lowering of (1 w i l l  c o n t i n u e  t i l l   1  a n d  a  r e l a t i v i s t i c a l l y
degenerate core with a mass approximately that of the limiting mass 
for  = 2) forms at the centre. By this stage, or soon afterwards, instability of
some sort is  expected to set in (see following $8) followed by gravitational
collapse and the phenomenon of the super-nova (of type II). In some instances,
what was originally the highly relativistic degenerate core of approximately 1.4

 will be left behind as a neutron star. That this happens sometimes is confir-
med by the fact that in those cases for which reliable estimates of the masses of
pulsars exist, they are consistently close to 1.4  However, in other instances -
perhaps, in the majority of the instances - what is left behind, after all ‘the
dust has settled’, will have masses in excess of that allowed for stable neutron
stars; and in these instances black holes will form.

In the case of less massive stars  6-8  the degenerate cores, which are
initially formed, are not highly relativistic. But the mass of core increases with
the further burning of the nuclear fuel at the interface of the core and the mantle;
and when the core reaches the limiting mass, an explosion occurs following
instability;  and it  is  believed that this is  the cause underlying super-nova
phenomenon of type I.

* I am grateful to Professor D. Arnett for guiding me through the recent literature and giving me
advice in the writing of this section.



From the foregoing brief description of what may happen during the late stages
in the evolution of massive stars, it is clear that the problems one encounters
are of exceptional complexity, in which a great variety of physical factors
compete. This is clearly not the occasion for me to enter into a detailed
discussion of these various questions. Besides, Professor Fowler may address
himself to some of these matters in his lecture that is to follow.

8. Instabilities of relativistic origin: (I) The vibrational instability of spherical stars
I now turn to the consideration of certain types of stellar instabilities which are
derived from the effects of general relativity and which have no counterparts
in the Newtonian framework. It will appear that these new types of instabilities
of relativistic origin may have essential roles to play in discussions pertaining to
gravitational collapse and the late stages in the evolution of massive stars.

We shall consider first the stability of spherical stars for purely radial
perturbations. The criterion for such stability follows directly from the linearized
equations governing the spherically symmetric radial oscillations of stars. In the
framework of the Newtonian theory of gravitation, the stability for radial
perturbations depends only on an average value of the adiabatic exponent, 
which is the ratio of the fractional Lagrangian changes in the pressure and in the
density experienced by a fluid element following the motion; thus,

(56)

And the Newtonian criterion for stability is

 < 4/3, dynamical instability of a global character will ensue with an e-folding
time measured by the time taken by a sound wave to travel from the centre to the
surface.

When one examines the same problem in the framework of the general theory
of relativity, one finds 12 that, again, the stability depends on an average value
of  but contrary to the Newtonian result, the stability now depends on the
radius of the star as well. Thus, one finds that no matter how high  may be,
instability will set in provided the radius is less than a certain determinate
multiple of the Schwarzschild radius,

Rs = 2 GM/c2. (58)
Thus, if for the sake of simplicity, we assume that  is a constant through the
star and equal to 5/3, then the star will become dynamically unstable for radial
perturbations, if R1 < 2.4 R,. And further, if r1  instability will set in for
all R < (9/8) Rs. The radius (9/8) Rs defines, in fact, the minimum radius which any
gravitating mass, in hydrostatic equilibrium, can have in the framework of general relativity.
This important result is implicit in a fundamental paper by Karl Schwarzschild
published in 1916. (Schwarzschild actually proved that for a star in which the
energy density is uniform, R > (9/8)Rs.)
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In one sense, the most important consequence of this instability of relativistic
origin is that  (again assumed to be a constant for the sake of simplicity)
differs from and is greater than 4/3 only by a small positive constant, then the
instability will set in for a radius R which is a large multiple of  and, therefore,
under circumstances when the effects of general relativity, on the structure of
the equilibrium configuration itself, are hardly relevant. Indeed, it follows13 f rom
the equations governing radial oscillations of a star, in a first post-Newtonian
approximation to the general theory of relativity,  that instability for radial
perturbations will set in for all

(59)

where K is a constant which depends on the entire march of density and pressure
in the equilibrium configuration in the Newtonian frame-work. Thus, for a
polytrope of index n, the value of the constant is given by

(60)

w h e r e   is  the Lane-Emden function in its  standard normalization  = 1
at  = 0),  is  the dimensionless radial  coordinate,   de f ines  the  boundary
of the polytrope (where = 0) and  is the derivative of  at 

Table 2
Values of the constant K in the inequality (59)

for various polytropic indices, n.
K n

In Table 2, we list the values of K for different polytropic indices. It should be
particularly noted that K increases without limit for  5 and the configuration
becomes increasingly centrally condensed.** Thus, already for n = 4.95 (for
which polytropic index  = 8.09 x 106  K-46. In other words, for the highly
centrally condensed massive stars (for which  differ from 4/3 by as little

* It is for this reason that we describe the instability as global.
** Since this was written, it has been possible to show (Chandrasekhar and Lebovitz 13a) that
for  5, the asymptotic behaviour of K is given by

and, further, that along the polytropic sequence, the criterion for instability (59) can be expressed
alternatively in the form
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as 0.01); the instability of relativistic origin will set in, already, when its radius
falls below 5 x 103  Clearly this relativistic instability must be considered
in the contexts of these problems.

A further application of the result described in the preceding paragraph is to
degenerate configurations near the limiting mass14. Since the electrons in
these highly relativistic configurations have velocities close to the velocity of
light, the effective value of  will be very close to 4/3 and the post-Newtonian
relativistic instability will set in for a mass slightly less than that of the
limiting mass. On account of the instability for radial oscillations setting in for
a mass less than  the period of oscillation, along the sequence of the
degenerate configurations, must have a minimum. This minimum can be
estimated to be about two seconds (see Fig. 6). Since pulsars, when they were
discovered, were known to have periods much less than this minimum value,
the possibility of their being degenerate configurations near the limiting mass
was ruled out; and this was one of the deciding factors in favour of the pulsars
being neutron stars. (But by a strange irony, for reasons we have briefly
explained in  7, pulsars which have resulted from super-nova explosions have
masses close to 1.4 

Finally, we may note that the radial instability of relativistic origin is the
underlying cause for the existence of a maximum mass for stability: it is a direct
consequence of the equations governing hydrostatic equilibrium in general
relativity. (For a complete investigation on the periods of radial oscillation of
neutron stars for various admissible equations of state, see a recent paper by
Detweiler and Lindblom15.)

9. Instabilities of relativistic origin: (2) The secular instability of rotating stars derived
from the emission of gravitational radiation by non-axisymmetric modes of oscillation
I now turn to a different type of instability which the general theory of relativity
predicts for rotating configurations. This new type of instability16 has its origin
in the fact that the general theory of relativity builds into rotating masses a
dissipative mechanism derived from the possibility of the emission of gravita-
tional radiation by non-axisymmetric modes of oscillation. It appears that this
instability limits the periods of rotation of pulsars. But first, I shall explain the
nature and the origin of this type of instability.

It is well known that a possible sequence of equilibrium figures of rotating
homogeneous masses is the Maclaurin sequence of oblate spheroids17. When
one examines the second harmonic oscillations of the Maclaurin spheroid, in a
frame of reference rotating with its angular velocity, one finds that for two of
these modes, whose dependence on the azimuthal angle is given by  the
characteristic frequencies of oscillation,  depend on the eccentricity  in the
manner illustrated in Figure 7. It will be observed that one of these modes
becomes neutral (i.e.,  0) when  = 0.813 and that the two modes coalesce
when  = 0.953 and become complex conjugates of one another beyond this

* By reason of the dominance of the radiation pressure in these massive stars and of  being very
close to zero.
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Fig. 6. The variation of the period of radial oscillation along the completely degenerate configura-
tions. Notice that the period tends to infinity for a mass close to the limiting mass. There is
consequently a minimum period of oscillation along these configurations; and the minimum period
is approximately 2 seconds. (From J. Skilling, Pulsating Stars (Plenum Press, New York, 1968), p. 59.)

point. Accordingly, the Maclaurin spheroid becomes dynamically unstable at the
latter point (first isolated by Riemann). On the other hand, the origin of the
neutral mode at e = 0.813 is that at this point a new equilibrium sequence of
triaxial ellipsoids - the ellipsoids of Jacobi - bifurcate. On this latter account,
Lord Kelvin conjectured in 1883 that

if there be any viscosity, however slight . . . the equilibrium beyond
e = 0.81 cannot be secularly stable.

Kelvin’s reasoning was this: viscosity dissipates energy but not angular mo-
mentum. And since for equal angular momenta, the Jacobi ellipsoid has a
lower energy content than the Maclaurin spheroid, one may expect that the
action of viscosity will be to dissipate the excess energy of the Maclaurin
spheroid and transform it into the Jacobi ellipsoid with the lower energy. A
detailed calculation 18 of the effect of viscous dissipation on the two modes of
oscillation, illustrated in Figure 7, does confirm Lord Kelvin’s conjecture. It is
found that viscous dissipation makes the mode, which becomes neutral at
e= 0.813, unstable beyond this point with an e-folding time which depends
inversely on the magnitude of the kinematic viscosity and which further de-
creases monotonically to zero at the point, e  = 0.953 where the dynamical
instability sets in.

Since the emission of gravitational radiation dissipates both energy and
angular momentum, it does not induce instability in the Jacobi mode; instead it
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Fig. 7. The characteristic frequencies (in the unit of the two even modes of second-
harmonic oscillation of the Maclaurin sphcriod. The Jacobi sequence bifurcates from the Mac-
laurin sequence by the mode that is neutral  = 0) at e = 0.813; and the Dcdekind sequence
bifurcates by the alternative mode at D. At O2, (e = 0.9529) the Maclaurin spheroid becomes
dynamically unstable. The real and the imaginary parts of the frequency, beyond O2 are shown by
the full line and the dashed curves, respectively. Viscous dissipation induces instability in the
branch of the Jacobi mode; and radiation-reaction induces instability in the branch DO, of the
Dedekind mode.

induces instability in the alternative mode at the same eccentricity. In the first
instance this may appear surprising; but the situation we encounter here
clarifies some important issues.

If instead of analyzing the normal modes in the rotating frame, we had
analyzed them in the inertial frame, we should have found that the mode which
becomes unstable by radiation reaction at e = 0.813, is in fact neutral at this
point. And the neutrality of this mode in the inertial frame corresponds to the
fact that the neutral deformation at this point is associated with the bifurcation
(at this point) of a new triaxial sequence-the sequence of the Dedekind
ellipsoids. These Dedekind ellipsoids, while they are congruent to the Jacobi
ellipsoids, they differ from them in that they are at rest in the inertial frame and
owe their triaxial figures to internal vortical motions. An important conclusion
that would appear to follow from these facts is that in the framework of general
relativity we can expect secular instability, derived from radiation reaction, to
arise from a Dedekind mode of deformation (which is quasi-stationary in the
inertial frame) rather than the Jacobi mode (which is quasi-stationary in the
rotating frame).

A further fact concerning the secular instability induced by radiation reac-
tion, discovered subsequently by Friedman19 and by Comins20, is that the
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modes belonging to higher values of m (= 3, 4, , ,) become unstable at smaller
eccentricities though the e-folding times for the instability becomes rapidly
longer. Nevertheless it appears from some preliminary calculations of Fried-
man21 that it is the secular instability derived from modes belonging to m = 3
(or 4) that limit the periods of rotation of the pulsars.

It is clear from the foregoing discussions that the two types of instabilities of
relativistic origin we have considered are destined to play significant roles in
the contexts we have considered.

10. The mathematical theory of black holes
So far, I have considered only the restrictions on the last stages of stellar
evolution that follow from the existence of an upper limit to the mass of
completely degenerate configurations and from the instabilities of relativistic
origin. From these and related considerations, the conclusion is inescapable
that black holes will form as one of the natural end products of stellar evolution
of massive stars; and further that they must exist in large numbers in the
present astronomical universe. In this last section I want to consider very
briefly what the general theory of relativity has to say about them. But first, I
must define precisely what a black hole is.

A black hole partitions the three-dimensional space into two regions: an
inner region which is bounded by a smooth two-dimensional surface called the
event horizon; and an outer region, external to the event horizon, which is
asymptotically flat; and it is required (as a part of the definition) that no point
in the inner region can communicate with any point of the outer region. This
incommunicability is guaranteed by the impossibility of any light signal, origi-
nating in the inner region, crossing the event horizon. The requirement of
asymptotic flatness of the outer region is equivalent to the requirement that the
black hole is isolated in space and that far from the event horizon the space-
time approaches the customary space-time of terrestrial physics.

In the general theory of relativity, we must seek solutions of Einstein’s
vacuum equations compatible with the two requirements I have stated. It is a
startling fact that compatible with these very simple and necessary require-
ments, the general theory of relativity allows for stationary (i.e., time-indepen-
dent) black-holes exactly a single, unique, two-parameter family of solutions.
This is the Kerr family, in which the two parameters are the mass of the black
hole and the angular momentum of the black hole. What is even more remark-
able, the metric describing these solutions is simple and can be explicitly
written down.

I do not know if the full import of what I have said is clear. Let me explain.
Black holes are macroscopic objects with masses varying from a few solar

masses to millions of solar masses. To the extent they may be considered as
stationary and isolated, to that extent, they are all, every single one of them,
described exactly by the Kerr solution. This is the only instance we have of an
exact description of a macroscopic object. Macroscopic objects, as we see them
all around us, are governed by a variety of forces, derived from a variety of
approximations to a variety of physical theories. In contrast, the only elements
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in the construction of black holes are our basic concepts of space and time.
They are, thus, almost by definition, the most perfect macroscopic objects there
are in the universe. And since the general theory of relativity provides a single
unique two-parameter family of solutions for their descriptions, they are the
simplest objects as well.

Turning to the physical properties of the black holes, we can study them best
by examining their reaction to external perturbations such as the incidence of
waves of different sorts. Such studies reveal an analytic richness of the Kerr
space-time which one could hardly have expected. This is not the occasion to
elaborate on these technical matters22. Let it suffice to say that contrary to
every prior expectation, all the standard equations of mathematical physics can
be solved exactly in the Kerr space-time. And the solutions predict a variety
and range of physical phenomena which black holes must exhibit in their
interaction with the world outside.

The mathematical theory of black holes is a subject of immense complexity;
but its study has convinced me of the basic truth of the ancient mottoes,

and
The simple is the seal of the true

Beauty is the splendour of truth.
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