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MICROSCOPIC QUANTUM INTERFERENCE
EFFECTS IN THE THEORY OF
SUPERCONDUCTIVITY

Nobel Lecture, December 11, 1972

by
LEON N COOPER

Physics Department, Brown University, Providence, Rhode Island

It is an honor and a pleasure to speak to you today about the theory of super-
conductivity. In a short lecture one can no more than touch on the long history
of experimental and theoretical work on this subject before 1957. Nor can one
hope to give an adequate account of how our understanding of superconductivi-
ty has evolved since that time. The theory (1) we presented in 1957, applied
to uniform materials in the weak coupling limit so defining an ideal supercon-
ductor, has been extended in almost every imaginable direction. To these
developments so many authors have contributed (2) that we can make no
pretense of doing them justice. I will confine myself here to an outline of some
of the main features of our 1957 theory, an indication of directions taken since
and a discussion of quantum interference effects due to the singlet-spin pairing
in superconductors which might be considered the microscopic analogue of the
effects discussed by Professor Schrieffer.

NORMAL METAL
Although attempts to construct an electron theory of electrical conductivity
date from the time of Drude and Lorentz, an understanding of normal metal
conduction electrons in modern terms awaited the development of the quantum
theory. Soon thereafter Sommerfeld and Bloch introduced what has evolved
into the present description of the electron fluid. (3) There the conduction
electrons of the normal metal are described by single particle wave functions.
In the periodic potential produced by the fixed lattice and the conduction
electrons themselves, according to Bloch’s theorem, these are modulated
plane waves:

Ok(r) = ug (r) e™7,
where u,(r) is a two component spinor with the lattice periodicity. We use
Kto designate simultaneously the wave vector k, and the spin state 6: K=k, T ;
-K = -k, | . The single particle Bloch functions satisfy a Schrédinger equa-
tion

B
[ —2—mV2+Vo(")] Ok = Exlxg

where V (r) is the periodic potential and in general might be a linear operator
to include exchange terms.

The Pauli exclusion principle requires that the many electron wave function
be antisymmetric in all of its coordinates. As a result no two electrons can be



74 Physics 1972

Fig. 1. Fig. 2.

The normal ground state wavefunction, An excitation of the normal system.
Dy, 1S a filled Fermi sphere for both spin

directions.

in the same single particle Bloch state. The energy of the entire system is
2N
w=2¢

i=1

where &; is the Bloch energy of the itt single electron state. The ground state
of the system is obtained when the lowest N Bloch states of each spin are
occupied by single electrons; this can be pictured in momentum space as the
filling in of a Fermi sphere, Fig. 1. In the ground-state wave function there is
no correlation between electrons of opposite spin and only a statistical correla-
tion (through the general anti-symmetry requirement on the total wave func-
tion) of electrons of the same spin.

Single particle excitations are given by wave functions identical to the ground
state except that one electron states k; < kg are replaced by others kj < k,.
This may be pictured in momentum space as opening vacancies below the
Fermi surface and placing excited electrons above, Fig. 2. The energy difference
between the ground state and the excited state with the particle excitation ky
and the hole excitation %z is

&—& = &—Ep—(E—Ep) = &gy—er = ez +-ed]
where we define £ as the energy measured relative to the Fermi energy
&g = E&—Ep.

When Coulomb, lattice-electron and other interactions, which have been
omitted in constructing the independent particle Bloch model are taken into
account, various modifications which have been discussed by Professor Schrief-
fer are introduced into both the ground state wave function and the excitations.
These may be summarized as follows: The normal metal is described by a
ground state @, and by an excitation spectrum which, in addition to the
various collective excitations, consists of quasi-fermions which satisfy the usual
anticommutation relations. It is defined by the sharpness of the Fermi surface,
the finite density of excitations, and the continuous decline of the single particle
excitation energy to zero as the Fermi surface is approached.
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ELECTRON CORRELATIONSTHAT PRODUCE SUPERCONDUCTIVITY
For a description of the superconducting phase we expect to include correla-
tions that are not present in the normal metal. Professor Schrieffer has discussed
the correlations introduced by an attractive electron-electron interaction and
Professor Bardeen will discuss the role of the electron-phonon interaction in
producing the electron-electron interaction which is responsible for supercon-
ductivity. It seems to be the case that any attractive interaction between the
fermions in a many-fermion system can produce a superconducting-like state.
This is believed at present to be the case in nuclei, in the interior of neutron
stars and has possibly been observed (4) very recently in He’. We will therefore
develop the consequences of an attractive two-body interaction in a degenerate
many-fermion system without enquiring further about its source.

The fundamental qualitative difference between the superconducting and
normal ground state wave function is produced when the large degeneracy of
the single particle electron levels in the normal state is removed. If we visualize
the Hamiltonian matrix which results from an attractive two-body interaction
in the basis of normal metal configurations, we find in this enormous matrix,
sub-matrices in which all single-particle states except for one pair of electrons
remain unchanged. These two electrons can scatter via the electron-electron
interaction to all states of the same total momentum. We may envisage the
pair wending its way (so to speak) over all states unoccupied by other electrons.
[The electron-electron interaction in which we are interested is both weak
and slowly varying over the Fermi surface. This and the fact that the energy
involved in the transition into the superconducting state is small leads us to
guess that only single particle excitations in a small shell near the Fermi
surface play a role. It turns out, further, that due to exchange terms in the
electron-electron matrix element, the effective interaction in metals between
electrons of singlet spin is much stronger than that between electrons of triplet
spin-thus our preoccupation with singlet spin correlations near the Fermi
surface.] Since every such state is connected to every other, if the interaction
is attractive and does not vary rapidly, we are presented with submatrices of
the entire Hamiltonian of the form shown in Fig. 3. For purposes of illustration
we have set all off diagonal matrix elements equal to the constant-V and
the diagonal terms equal to zero (the single particle excitation energy at the
Fermi surface) as though all the initial electron levels were completely degener-
ate. Needless to say, these simplifications are not essential to the qualitative
result.

Diagonalizing this matrix results in an energy level structure with M-1
levels raised in energy to E = + V while one level (which is a superposition
of all of the original levels and quite different in character) is lowered in energy
to

E=—(M-1)7V.

Since M, the number of unoccupied levels, is proportional to the volume
of the container while V, the scattering matrix element, is proportional to
1/volume, the product is independent of the volume. Thus the removal of
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the degeneracy produces a single level separated from the others by a volume
independent energy gap.

To incorporate this into a solution of the full Hamiltonian, one must devise
a technique by which all of the electrons pairs can scatter while obeying the
exclusion principle. The wave function which accomplishes this has been dis-
cussed by Professor Schrieffer. Each pair gains an energy due to the removal of
the degeneracy as above and one obtains the maximum correlation of the entire
wave function if the pairs all have the same total momentum. This gives a
coherence to the wave function in which for a combination of dynamical and
statistical reasons there is a strong preference for momentum zero, singlet spin
correlations, while for statistical reasons alone there is an equally strong
preference that all of the correlations have the same total momentum.

In what follows I shall present an outline of our 1957 theory modified by
introducing the quasi-particles of Bogoliubov and Valatin. (5) This leads to
a formulation which is generally applicable to a wide range of calculations
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Fig. 4.

The ground state of the superconductor is
a linear superposition of states in which pairs
(kT- k) are occupied or unoccupied.
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in a manner analogous to similar calculations in the theory of normal metals.
We limit the interactions to terms which scatter (and thus correlate) singlet

zero-momentum pairs. To do this, it is convenient to introduce the pair
operators :

b = c_gtx

by = cxelx
and using these we extract from the full Hamiltonian the so-called reduced
Hamiltonian

Hrequcea = Z 2le| by by + T 2ebi b, + X Viabrb,

k<ks k>kp Py

where V,, is the scattering matrix element between the pair states k and k’.

GROUND STATE

As Professor Schrieffer has explained, the ground state of the superconductor
is a linear superposition of pair states in which the pairs (kN k! ) are occupied
or unoccupied as indicated in Fig. 4. It can be decomposed into two disjoint
vectors - one in which the pair state kis occupied, ¢ and one in which it is
unoccupied, ¢(k):

Yo = ”k@(k) + 29

The probability amplitude that the pair state kis (is not) occupied in the
ground state is then vi(u). Normalization requires that lul?+ |0 |* =1. The
phase of the ground state wave function may be chosen so that with no loss o
generality u,is real. We can then write

u = (1—p)1

v = hliz &l
where

0 L.

A further decomposition of the ground state wave function of the supercon-
ductor in which the pair states k and k" are either occupied or unoccupied
Fig. 5 is:

Yo = Dy aey T Ul D ay, v + 0t Oi ey + UGy e

This is a Hartree-like approximation in the probability amplitudes for the

occupation of pair states. It can be shown that for a fermion system the wave
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Fig. 5.
A decomposition of the ground state of the superconductor into states in which the pair

states k and £’ are either occupied or unoccupied.

function cannot have this property unless there are a variable number of
particles. To terms of order 1/N, however, this decomposition is possible for
a fixed number of particles; the errors introduced go to zero as the number of
particles become infinite. (6)

The correlation energy, W, is the expectation value of H, for the state 1,

We = ('l/)o; HredT/Jo) = W, [h,(P]-
Setting the variation of W, with respect to h and ¢ equal to zero in order to
minimize the energy gives

h =1/2 (I-¢/E)
E = (e2+|Af2)re

where
A4 = |A|e®
satisfies the integral equation
A(E)
A(k) = —1/2 2 Vkls'_,“_'
¥ E (K"

If a non-zero solution of this integral equation exists, W .< 0 and the
“normal” Fermi sea is unstable under the formation of correlated pairs.

In the wave function that results there are strong correlations between pairs
of electrons with opposite spin and zero total momentum. These correlations
are built from normal excitations near the Fermi surface and extend over spatial
distances typically of the order of 10°cm. They can be constructed due to the
large wave numbers available because of the exclusion principle. Thus with
a small additional expenditure of kinetic energy there can be a greater gain
in the potential energy term. Professor Schrieffer has discussed some of the
properties of this state and the condensation energy associated with it.

SINGLE-PARTICLE EXCITATIONS
In considering the excited states of the superconductor it is useful, as for the
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normal metal, to make a distinction between single-particle and collective
excitations; it is the single-particle excitation spectrum whose alteration is
responsible for superfluid properties. For the superconductor excited (quasi-
particle) states can be defined in one-to-one correspondence with the excita-
tions of the normal metal. One finds, for example, that the expectation value

of H,for the excitation Fig. 6 is given by

E, = /ei—l—|A 2,

In contrast to the normal system, for the superconductor even as & goes to

red

zero E remains larger than zero, its lowest possible value being E = IA[
One can therefore produce single particle excitations from the superconducting
ground state only with the expenditure of a small but finite amount of energy.
This is called the energy gap; its existence severely inhibits single particle
processes and is in general responsible for the superfluid behavior of the electron
gas. [In a gapless superconductor it is the finite value of A(r), the order para-
meter, rather than the energy gap as such that becomes responsible for the
superfluid properties.] In the ideal superconductor, the energy gap appears
because not a single pair can be broken nor can a single element of phase
space be removed without a finite expenditure of energy. If a single pair is
broken, one loses its correlation energy; if one removes an element of phase space
from the system, the number of possible transitions of all the pairs is reduced
resulting in both cases in an increase in the energy which does not go to zero
as the volume of the system increases.

The ground state of the superconductor and the excitation spectrum de-
scribed above can conveniently be treated by introducing a linear combination
of ¢* and ¢, the creation and annihilation operators of normal fermions. This
is the transformation of Bogoliubov and Valatin (5):

* * *
Vho = Uilg — Ul K
* * *
Vi = Uik T Wk
1t follows that

Vo =0
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so that the y;; play the role of annihilation operators, while the y;i create
excitations

Viio - 7;1"/’0:%;’ © e mye

The y operators satisfy Fermi anti-commutation relations so that with them
we obtain a complete orthonormal set of excitations in one-to-one correspon-
dence with the excitations of the normal metal.

We can sketch the following picture. In the ground state of the supercon-
ductor all the electrons are in singlet-pair correlated states of zero total
momentum. In an m electron excited state the excited electrons are in “quasi-
particle” states, very similar to the normal excitations and not strongly
correlated with any of the other electrons. In the background, so to speak, the
other electrons are still correlated much as they were in the ground state.
The excited electrons behave in a manner similar to normal electrons; they
can be easily scattered or excited further. But the background electrons -
those which remain correlated - retain their special behavior; they are difficult
to scatter or to excite.

Thus, one can identify two almost independent fluids. The correlated portion
of the wave function shows the resistance to change and the very small specific
heat characteristic of the superfluid, while the excitations behave very much
like normal electrons, displaying an almost normal specific heat and resistance.
When a steady electric field is applied to the metal, the superfluid electrons
short out the normal ones, but with higher frequency fields the resistive proper-
ties of the excited electrons can be observed. [7]

THERMODYNAMIC PROPERTIES, THE IDEAL SUPERCONDUCTOR

We can obtain the thermodynamic properties of the superconductor using
the ground state and excitation spectrum just described. The free energy of
the system is given by

Flh, . f1 = We (T)—T5S,

where T is the absolute temperature and S is the entropy; fis the super-
conducting Fermi function which gives the probability of single-particle ex-
citations. The entropy of the system comes entirely from the excitations as
the correlated portion of the wave function is non-degenerate. The free energy
becomes a function of f(k) and h(k), where f(k) is the probability that the
state k is occupied by an excitation or a quasi-particle, and h(k) is the relative
probability that the state k is occupied by a pair given that is not occupied by
a quasi-particle. Thus some states are occupied by quasi-particles and the
unoccupied phase space is available for the formation of the coherent back-
ground of the remaining electrons. Since a portion of phase space is occupied by
excitations at finite temperatures, making it unavailable for the transitions
of bound pairs, the correlation energy is a function of the temperature, We(T).
As T increases, W(T) and at the same time A decrease until the critical tem-
perature is reached and the system reverts to the normal phase.

Since the excitations of the superconductor are independent and in a one-
to-one correspondence with those of the normal metal, the entropy of an
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excited configuration is given by an expression identical with that for the
normal metal except that the Fermi function, f(k), refers to quasi-particle
excitations. The correlation energy at finite temperature is given by an expres-
sion similar to that at 7 = 0 with the available phase space modified by the
occupation functions f(k). Setting the variation of F with respect to h, ¢, and
fequal to zero gives:
h=1/2 (1—¢/E)
E= [er 4 |AF
and
1
fer——
1 + exp(E/ksT)

where
A =lA|et

is now temperature-dependent and satisfies the fundamental integral equation
of the theory

A(T) = —1/2 % ka,Ak’(T) tanh(E"’(T)).

E, (T) 2kgT

The form of these equations is the same as that at 7 = 0 except that the
energy gap varies with the temperature. The equation for the energy gap can
be satisfied with non-zero values of A only in a restricted temperature range.
The upper bound of this temperature range is defined as 7., the critical
temperature. For T <7, singlet spin zero momentum electrons are strongly
correlated, there is an energy gap associated with exciting electrons from the
correlated part of the wave function and E(k) is bounded below by |A| In
this region the system has properties qualitatively different from the normal
metal.

In the region T > T,, A = 0 and we have in every respect the normal solu-
tion. In particular f, the distribution function for excitations, becomes just the
Fermi function for excited electrons £ > ky, and for holes £ << ky

|
4 I+ exp(|e|/ka T)’

If we make our simplifications of 1957, (defining in this way an ‘ideal’

superconductor)

Vir=—V le| < fiway
=0 otherwise
and replace the energy dependent density of states by its value at the Fermi
surface, N(O), the integral equation for A becomes
hwav 4 ‘7—
L=NO)V | —Ed'g—tanh (“/sd+|A'2).
o Jer+|df 2%kpT
The solution of this equation, Fig. 7, gives A(T) and with this f and A.
We can then calculate the free energy of the superconducting state and obtain

the thermodynamic properties of the system.
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Fig. 7.
Variation of the energy gap with temperature for the ideal superconductor.

In particular one finds that at T¢ (in the absence of a magnetic field) there
is a second-order transition (no latent heat : W,=0at T,) and a discontinuity
in the specific heat. At very low temperatures the specific heat goes to zero
exponentially. For this ideal superconductor one also obtains a law of cor-
responding states in which the ratio

T2
Y=< — 0.170,

0
where
y = 2/372N(0)kp2

The experimental data scatter about the number 0.170. The ratio of A

to kgTe is given as a universal constant
AlkpTe = 1.75.

There are no arbitrary parameters in the idealized theory. In the region
of empirical interest all thermodynamic properties are determined by the quanti-
ties v and fiwgy e 1/¥ OV, The first, , is found by observation of the normal
specific heat, while the second is found from the critical temperature, given by

kpTe = 1.14 fiwaye 1INOV,

At the absolute zero

A = Kwgy/[sinh (N(O) V)'
Further, defining a weak coupling limit [N(O) V <€1] which is one region
of interest empirically, we obtain
A =~ 2hwaye L INOV,

The energy difference between the normal and superconducting states be-
comes (again in the weak coupling limit)

WS— Wn e Wc = ‘—QN(O) (ﬁwav)z C'z IN(O)V.
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The dependence of the correlation energy on (fiwav)? gives the isotope effect,
while the exponential factor reduces the correlation energy from the dimen-
sionally expected N(0)(fway)? to the much smaller observed value. This,
however, is more a demonstration that the isotope effect is consistent with our
model rather than a consequence of it, as will be discussed further by Professor
Bardeen.

The thermodynamic properties calculated for the ideal superconductor are
in qualitative agreement with experiment for weakly coupled superconductors.
Very detailed comparison between experiment and theory has been made by
many authors. A summary of the recent status may be found in reference (2).
When one considers that in the theory of the ideal superconductor the existence
of an actual metal is no more than hinted at (We have in fact done all the
calculations considering weakly interacting fermions in a container.) so that
in principle (with appropriate modifications) the calculations apply to neutron
stars as well as metals, we must regard detailed quantitative agreement as a
gift from above. We should be content if there is a single metal for which such
agreement exists. [Pure single crystals of tin or vanadium are possible candi-
dates.]

To make comparison between theory and experiments on actual metals, a
plethora of detailed considerations must be made. Professor Bardeen will
discuss developments in the theory of the electron-phonon interaction and the
resulting dependence of the electron-electron interaction and superconducting
properties on the phonon spectrum and the range of the Coulomb repulsion.
Crystal symmetry, Brillouin zone structure and the actual wave function (S,
P or D states) of the conduction electrons all play a role in determining real
metal behavior. There is a fundamental distinction between superconduc-
tors w ich always show a Meissner effect and those (type II) which allow mag-
netic field penetration in units of the flux quantum.

When one considers, in addition, specimens with impurities (magnetic and
otherwise) superimposed films, small samples, and so on, one obtains a variety
of situations, developed in the years since 1957 by many authors, whose rich-
ness and detail takes volumes to discuss. The theory of the ideal superconductor
has so far allowed the addition of those extensions and modifications necessary
to describe, in what must be considered remarkable detail, all of the experience
actually encountered.

MICROSCOPIC INTERFERENCE EFFECTS

In its interaction with external perturbations the superconductor displays
remarkable interference effects which result from the paired nature of the
wave function and are not at all present in similar normal metal interactions.
Neither would they be present in any ordinary two-fluid model. These “co-
herence effects” are in a sense manifestations of interference in spin and
momentum space on a microscopic scale, analogous to the macroscopic
quantum effects due to interference in ordinary space which Professor Schrieffer
discussed. They depend on the behavior under time reversal of the perturbing
fields. (8) It is intriguing to speculate that if one could somehow amplify them
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Fig. 8.
Ultrasonic attenuation as a function of temperature across the superconducting transition

as measured by Morse and Bohm.

properly, the time reversal symmetry of a fundamental interaction might be
tested. Further, if helium 3 does in fact display a phase transition analogous to
the superconducting transition in metals as may be indicated by recent experi-
ments (4) and this is a spin triplet state, the coherences effects would be
greatly altered.

Near the transition temperature these coherence effects produce quite dra-
matic contrasts in the behavior of coefficients which measure interactions with
the conduction electrons. Historically, the comparison with theory of the be-
havior of the relaxation rate of nuclear spins (9) and the attenuation of longi-
tudinal ultrasonic waves in clean samples (10) as the temperature is decreased
through T.provided an early test of the detailed structure of the theory.

The attenuation of longitudinal acoustic waves due to their interaction
with the conduction electrons in a metal undergoes a very rapid drop (10a)
as the temperature drops below T. Since the scattering of phonons from
“normal” electrons is responsible for most of the acoustic attenuation, a drop
was to be expected ; but the rapidity of the decrease measured by Morse and
Bohm (10b) Fig. 8 was difficult to reconcile with estimates of the decrease in
the normal electron component of a two-fluid model.

The rate of relaxation of nuclear spins was measured by Hebel and Slichter
(9a) in zero magnetic field in superconducting aluminum from 0.94 K to
42 K just at the time of the development of our 1957 theory. Redfield and
Anderson (9b) confirmed and extended their results. The dominant relaxation
mechanism is provided by interaction with the conduction electrons so that
one would expect, on the basis of a two-fluid model, that this rate should



L. N. Cooper 85

decrease below the transition temperature due to the diminishing density of
“normal” electrons. The experimental results however show just the reverse.
The relaxation rate does not drop but increases by a factor of more than two
just below the transition temperature. Fig 13. This observed increase in the
nuclear spin relaxation rate and the very sharp drop in the acoustic attenuation
coefficient as the temperature is decreased through T.impose contradictory
requirements on a conventional two-fluid model.

To illustrate how such effects come about in our theory, we consider the transi-
tion probability per unit time of a process involving electronic transitions from
the excited state k to the state k” with the emission to or absorption of energy from
the interacting field. What is to be calculated is the rate of transition between
an initial state Il > and a final state | f > with the absorption or emission of
the energy Awjy— (a phonon for example in the interaction of sound waves
with the superconductor). All of this properly summed over final states and
averaged with statistical factors over initial states may be written:

%ﬁ€WM—MWQTﬂ<fUﬂuﬁ>’60%—%@

0 =—

)3 P exp(~— Wi/kBT)

We focus our attention on the matrix element <C f lHintIi >. This typically
contains as one of its factors matrix elements between excited states of the
superconductor of the operator

B =X Byylxtx
KK
where ¢g. and c.are the creation and annihilation operators for electrons in
the states K’ and K, and Bk1,, is the matrix element between the states K’ and
K of the configuration space operator B(r)
Byx = < K (B(r)| K >.

The operator B is the electronic part of the matrix element between the full

final and initial state
< flHmg 1 > = mua< f| B|i >.

In the normal system scattering from single-particle electron states K to K’
is independent of scattering from -K’ to -K. But the superconducting states
are linear superpositions of (K, -K) occupied and unoccupied. Because of this
states with excitations kT and k’ T are connected not only by C;/Té‘kT but also
by ¢ 4 (C_py 5 if the state I f > contains the single-particle excitation k' | while
the state |{ > contains kT, as a result of the superposition of occupied and
unoccupied pair states in the coherent part of the wave function, these are
connected not only by Bg.x exCcx but also by B_x k- gl g

For operators which do not flip spins we therefore write:

* *
B =2 Bpxcxx+ Bk xC xt.x)
kK

Many of the operators, B, we encounter (e.g., the electric current, or the
charge density operator) have a well-defined behavior under the operation
of time reversal so that

Bex = + B.x.x = Bun
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The two states | i > and < f | shown are connected by c*er cir with the amplitude ux/uix .

Then B becomes
*» *
B = X By (cpy6ur £ ¢ pypey)
kK

where the upper (lower) sign results for operators even (odd) under time

reversal.

The matrix element of B between the initial state, ¥ . . . i . ., and the
final state y . . . 4. .. contains contributions from c*wsc s Fig.9 and un-
expectedly from c*cu Fig. 10. As a result the matrix element squared

|< f | B | i> |Z contains terms of the form
|Bk’k|2 |(“k’uk + Uk’”l:)lzy
where the sign is determined by the behavior of B under time reversal:
upper sign B even under time reversal
lower sign B odd under time reversal.

Applied to processes involving the emission or absorption of boson quanta
such as phonons or photons, the squared matrix element above is averaged
with the appropriate statistical factors over initial and summed over final
states; substracting emission from absorption probability per unit time, we
obtain typically
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The two states | i > and < f | are also connected by c*aqe, with the amplitude vv*, .

47 -
a=— Imf* 2 |(wew, F op0i)|P (fo—fa) OB —E—ho 41)
1273

where f,is the occupation probability in the superconductor for the excitation
kTor kl,. [In the expression above we have considered only quasiparticle or
quasi-hole scattering processes (not including processes in which a pair of
excitations is created or annihilated from the coherent part of the wave
function) since h® |wx| < A, is the usual region of interest for the ultrasonic
attenuation and nuclear spin relaxation we shall contrast.]

For the ideal superconductor, there is isotropy around the Fermi surface
and symmetry between particles and holes; therefore sums of the form Z can

be converted to integrals over the superconducting excitation energy, E:
E

I 2N0) | —
> - ()L Eo s

E
where N (6—==—+&= N(O), -is the density of excitations in the super-

dE

conductor, Fig. 11.
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Fig. 11.
Ratio of superconducting to normal den-
E/A  sity of excitations as a function of E/A.

The appearance of this density of excitations is a surprise. Contrary to our
intuitive expectations, the onset of superconductivity seems initially to enhance
rather than diminish electronic transitions, as might be anticipated in a reason-
able two-fluid model.

But the coherence factors I(u'u:F v'v*)l2 are even more surprising; they behave
in such a way as to sometimes completely negate the effect of the increased
density of states. This can be seen using the expressions obtained above for u
and v for the ideal superconductor to obtain

(w'uTFov'v)? = l (1+68j:—£)
2 EE’

In the integration over k and k’ the g¢’ term vanishes. We thus define
(w'uTo'v)l; in usual limit where Awy_y< A, e~¢’ and E ~ E’, this be-
comes

1 e
(W?—v?)? — 5(—E—2 operators even under time reversal

2 42

For operators even under time reversal, therefore, the decrease of the co-

1 E?
(ur40?)? — —(1+—) operators odd under time reversal.

herence factors near & = 0 just cancels the increase due to the density of states.
For the operators odd under time reversal the effect of the increase of the densi-
ty of states is not cancelled and should be observed as an increase in the rate
of the corresponding process.

In general the interaction Hamiltonian for a field interacting with the super-
conductor (being basically an electromagnetic interaction) is invariant under
the operation of time reversal. However, the operator B might be the electric
current j(r) (for electromagnetic interactions) the electric charge density
o{r) (for the electron-phonon interaction) or the z component of the electron
spin operator, ¢, (for the nuclear spin relaxation interaction). Since under
time-reversal

jr,t) > — j(r, —t) (electromagnetic interaction)

o(r, t) > 4 g(r, —t) (electron-phonon interaction)

o:(t) » — o{—t)  (nuclear spin relaxation interaction)
these show strikingly different interference effects.
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Fig. 12.

Comparison of observed ultrasonic attenuation with the ideal theory. The data are due to
Morse and Bohm.

Ultrasonic attenuation in the ideal pure superconductor for gI » 1 (the
product of the phonon wave number and the electron mean free path) depends
in a fundamental way on the absorption and emission of phonons. Since the
matrix elements have a very weak dependence on changes near the Fermi
surface in occupation of states other than k or &’ that occur in the normal to
superconducting transition, calculations within the quasi-particle model can
be compared in a very direct manner with similar calculations for the normal
metal, as By, is the same in both states. The ratio of the attenuation in the
normal and superconducting states becomes:

as * o e (BN YE)
;}-:—4]41 dE(u?—0?), (;) E

2
Since (u2—1)2):——>§(i) , the coherence factors cancel the density of states

giving

ag 2

— 2f(A(T) =

an A(T)\
1 7
—{—exp(kBT)

Morse and Bohm (10b) used this result to obtain a direct experimental
determination of the variation of A with 7. Comparison of their attenuation
data with the theoretical curve is shown in Figure 12.
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In contrast the relaxation of nuclear spins which have been aligned in a
magnetic field proceeds through their interaction with the magnetic moment
of the conduction electrons. In an isotropic superconductor this can be shown
to depend upon the z component of the electron spin operator

Byx = B(CZ,TC,‘T—cch_k,l)
so that

BK'K = _B-K-K"

This follows in general from the property of the spin operator under time
reversal

o:(t) = — o2(—1).

The calculation of the nuclear spin relaxation rate proceeds in a manner
not too different from that for ultrasonic attenuation resulting finally in a
ratio of nuclear spin relaxation rates in superconducting and normal states
in the same sample:

& —— 0 2 2)* I_f : M
= —4 [dE(u —l—v)s(8) 5

But (42+-22); does not go to zero at the lower limit so that the full effect of
the increase in density of states at £ = A is felt. Taken literally, in fact, this
expression diverges logarithmically at the lower limit due to the infinite density
of states. When the Zeeman energy difference between the spin up and spin
down states is included, the integral is no longer divergent but the integrand
is much too large. Hebel and Slichter, by putting in a broadening of levels
phenomenologically, could produce agreement between theory and experi-
ment. More recently Fibich (11) by including the effect of thermal phonons
has obtained the agreement between theory and experiment shown in Fig. 13.
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Fig. 13.

Comparison of observed nuclear spin relaxation rate with theory. The circles represent

experimental data of Hebel and Slichter, the crosses data by Redfield and Anderson.
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Interference effects manifest themselves in a similar manner in the interac-
tion of electromagnetic radiation with the superconductor. Near T .the absorp-
tion is dominated by quasi-particle scattering matrix elements of the type we
have described. Near T = 0, the number of quasi-particle excitations goes
to zero and the matrix elements that contribute are those in which quasi-
particle pairs are created from %, For absorption these latter occur only
when fw > 24. For the linear response of the superconductor to a static
magnetic field, the interference occurs in such a manner that the paramagnetic
contribution goes to zero leaving the diamagnetic part which gives the Meiss-
ner effect.

The theory developed in 1957 and applied to the equilibrium properties
of uniform materials in the weak coupling region has been extended in numer-
ous directions by many authors. Professor Schrieffer has spoken of Josephson
junctions and macroscopic quantum interference effects; Professor Bardeen
will discuss the modifications of the theory when the electron-phonon inter-
actions are strong. The treatment of ultrasonic attenuation, generalized to
include situations in uniform superconductors in which gl <1, gives a sur-
prisingly similar result to that above. (12) There have been extensive de-
velopments using Green’s function methods (13) appropriate for type II super-
conductors, materials with magnetic impurities and non-uniform materials or
boundary regions where the order parameter is a function of the spatial co-
ordinates. (14) With these methods formal problems of gauge invariance and/or
current conservation have been resolved in a very elegant manner. (15) In
addition, many calculations (16) of great complexity and detail for type II
superconductors have treated ultrasonic attenuation, nuclear spin relaxation
and other phenomena in the clean and dirty limits (few or large numbers of
impurities). The results cited above are modified in various ways. For example,
the average density of excitation levels is less sharply peaked at T .in a type II
superconductor; the coherence effects also change somewhat in these altered
circumstances but nevertheless play an important role. Overall one can say
that the theory has been amenable to these generalizations and that agreement
with experiment is good.

It is now believed that the finite many-nucleon system that is the atomic
nucleus enters a correlated state analogous to that of a superconductor. (17)
Similar considerations have been applied to many-fermion systems as diverse
as neutron stars, (18) liquid He’, (19) and to elementary fermions. (20) In
addition the idea of spontaneously broken symmetry of a degenerate vacuum
has been applied widely in elementary particle theory and recently in the
theory of weak interactions. (21) What the electron-phonon interaction has
produced between electrons in metals may be produced by the van der Waals
interaction between atoms in He’, the nuclear interaction in nuclei and neutron
stars, and the fundamental interactions in elementary fermions. Whatever the
success of these attempts, for the theoretician the possible existence of this
correlated paired state must in the future be considered for any degenerate
many-fermion system where there is some kind of effective attraction between
fermions for transitions near the Fermi surface.
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In the past few weeks my colleagues and I have been asked many times:
“What are the practical uses of your theory?” Although even a summary in-
spection of the proceedings of conferences on superconductivity and its appli-
cations would give an immediate sense of the experimental, theoretical and
developmental work in this field as well as expectations, hopes and anticipa-
tions -from applications in heavy electrical machinery to measuring devices
of extraordinary sensitivity and new elements with very rapid switching speeds
for computers - I, personally, feel somewhat uneasy responding. The discovery
of the phenomena and the development of the theory is a vast work to which
many scientists have contributed. In addition there are numerous practical
uses of the phenomena for which theory rightly should not take credit. A
theory (though it may guide us in reaching them) does not produce the trea-
sures the world holds. And the treasures themselves occasionally dazzle our
attention; for we are not so wealthy that we may regard them as irrelevant.

But a theory is more. It is an ordering of experience that both makes ex-
perience meaningful and is a pleasure to regard in its own right. Henri Poin-
cart wrote (22):

Le savant doit ordonner; on fait la science
avec des faits comme une maison avec des
pierres; mais une accumulation de faits
n'est pas plus une science qu'un tas de
pierres n'est une maison.

One can build from ordinary stone a humble house or the finest chateau.
Either is constructed to enclose a space, to keep out the rain and the cold.
They differ in the ambition and resources of their builder and the art by which
he has achieved his end. A theory, built of ordinary materials, also may serve
many a humble function. But when we enter and regard the relations in the
space of ideas, we see columns of remarkable height and arches of daring
breadth. They vault the fine structure constant, from the magnetic moment
of the electron to the behavior of metallic junctions near the absolute zero;
they span the distance from materials at the lowest temperatures to those in
the interior of stars, from the properties of operators under time reversal to the
behavior of attenuation coefficients just beyond the transition temperature.

I believe that I speak for my colleagues in theoretical science as well as
myself when I say that our ultimate, our warmest pleasure in the midst of one
of these incredible structures comes with the realization that what we have
made is not only useful but is indeed a beautiful way to enclose a space.
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