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Optics of light sources moving in refractive media
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Peculiarities of radiation in a medium

For a number of years the Vavilov-Cerenkov effect appeared as but a pecul-
iar optical phenomenon difficult to observe. Light emission was induced by
using radioactive preparations and the glow was observed visually'. The
weakness of the glow seemed to preclude any application of the phenom-
enon in physics, and so much the more in engineering.

Since the theory of the Vavilov-Cerenkov effect appeared’, the phenom-
enon could be regarded as an instance of super-light velocity optics*. This
was a singular example in this field, which seemingly was isolated from any
other known physical phenomenon. It was evident that in principle other
manifestations of super-light velocity optics were also possible, but their
observation appeared very complicated. For example, the first calculations
already indicated that if the Vavilov-Cerenkov radiation were induced not
by an electric charge, but, say, by the magnetic moment of an electron, it
should be so weak that its experimental detection would not be feasible’. Tt
was likewise evident that it would be difficult to create conditions for ob-
servation of atoms moving at super-light velocities*.

Theoretical analysis of all these problems was for a number of years of
interest chiefly from the viewpoint of principle.

Progress in nuclear physics and the improvement of experimental tech-
niques in recent years has resulted in the fact that the Vavilov-Cerenkov
effect has found numerous applications in the physics of high-energy par-
ticles. A connection between this phenomenon and many other problems
has also been found, as, for example, the physics of plasma, astrophysics, the
problem of radio wave generation, the problem of acceleration of particles,
elc.

A broader approach to the treatment of the phenomena related to the

* A summary of the results of theoretical work and list of references are given in the
review by B. M. Bolotovsky”.

442



OPTICS OF LIGHT SOURCES IN REFRACTIVE MEDIA 443

Vavilov-Cerenkov effect has now become not only justified but essentially
necessary.

The question naturally arises as to the peculiarities of a radiation which
may be set up not only by an electric charge, but by any source of light,
moving in a refractive mediums. Such a general approach to the problem,
involving, notably, the Vavilov-Cerenkov effect, is of interest now not only
from the viewpoint of principle. It may be hoped that some phenomena of
this range will also become in the near future a subject of experimental
study.

Since the discovery of the Vavilov-Cerenkov effect, our ideas of the mech-
anism of interaction between a rapidly moving particle and a medium
have undergone a considerable change.

Formerly it appeared unquestionable that radiation arising during an elec-
tromagnetic interaction between high-energy particles and a medium is al-
ways some kind of a « bremsstrahlung ». Most of the energy of such radiation
is carried by high-energy photons. The optical properties of the medium
should not be of significance for the emission and propagation of such pho-
tons. It was also assumed that the processes of ionization and excitation by
fast particles might be regarded as a sum of independent interactions of such
particles with individual atoms and molecules. This led to the deduction that
generally for interaction between high-energy particles and a substance its
macroscopic properties are likewise of no importance.

The discovery and interpretation of the Vavilov-Cerenkov effect, and then
the connection between this phenomenon and ionization losses, found by
Fermi’, have led to a revision of this viewpoint. It has now become evident
that the macroscopic properties of the medium play an important part in the
processes of radiation of light by rapidly moving particles.

The ratio between the velocity of the emitter and that of light is a highly
important factor on which radiation depends. In a vacuum, the velocity of
light is constant and always exceeds that of the emitter. It enters the formulae
determining the radiation, as a universal constant. Radiation in a vacuum
is therefore determined solely by the nature of the emitter and the law of its
motion. The case is different in a refractive medium. The phase and group
velocities of light differ from those in a vacuum. They depend on the prop-
erties of the medium and on the frequency of the light. In optically aniso-
tropic media, they are a function of the direction of propagationand polariza-
tion of the waves. In media of limited dimensions, changes in the velocity
of light during transition through the boundary of the media are also of
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importance. Hence, in a refractive medium, the ratio between the velocity of
the emitter and that of wave propagation depends considerably on the veloc-
ity of light in a medium and on its changes. Unlike a vacuum, the ratio may,
notably, exceed unity. As a result, not only radiation properties but some-
times even the very fact of its origination depend on the peculiarities of light
propagation in a medium. The Vavilov-Cerenkov effect is a case in point.

Radiation in a medium naturally also depends to a very great extent on
the nature of the emitter. The theory makes it possible to foretell the prop-
erties of the Vavilov-Cerenkov radiation not only for a moving electric
charge, but also for other cases. For instance, similar to an electric charge,
the Vavilov-Cerenkov radiation should have also been produced by a mag-
netic charge, had it been proved to exist’.

Whereas the question of radiation of a magnetic charge should now, too,
be considered as being only theoretically possible the question of the Vavilov-
Cerenkov effect for magnetic and electric dipoles and multipoles is quite real
at present.

As a matter of fact, analysis of the radiation of a moving system of par-
ticles may prove necessary in resolving the numerous tasks related to process-
es in plasma and to problems of acceleration of particles. It is evident that
a system of particles may, notably, be quasi-neutral, but it may possess an
electric and, particularly, a magnetic moment due to moving ring currents.

A system of particles may not only move as a whole; it may also have
natural frequencies of oscillations. This is true to an even greater extent of
such systems as a moving atom, ion or atomic nucleus. An electron moving
in a magnetic field may likewise possess natural frequency (Larmor frequen-
cy of revolution about the lines of a field). Therefore, apart from general-
izing the theory of the Vavilov-Cerenkov effect, analysis is also required of
the general case of radiation of systems possessing natural frequencies of
oscillations’.

Such a general analysis also includes the Vavilov-Cerenkov effect. The
latter corresponds to the limiling case when the natural frequency is zero.

The fact that the theory of radiation of a charge moving with a velocity
exceeding that of light has not been revised in the past twenly years does
not mean at all the theory of this effect has been fully consummated. This
can be seen from the following example. L. I. Mandelstam was the first
to point out that it is not necessary for a charge to move in a continuous
medium in order to radiate during super-light velocity*. The radiation re-
* See article by V. L. Ginzburg and I. M. Frank’.
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mains the same if the charge moves along the axis of a hollow cylindrical
channel inside the medium, provided the diameter of the channel is small
in comparison with the length of the emitted wave. For practical purposes
this is very important, since it makes it possible to obtain radiation in a me-
dium under conditions when the emitter does not collide directly with the
atoms of the medium, which may deform or destroy it. It seemed that this
applied also to the radiation of a dipole in a medium.

As recently shown, however, by V. L. Ginzburg and his associales, this
question is not so simple as it appeared before”. The properties of a me-
dium directly adjacent to the dipole may play an important part, and the
presence of a channel of any, even the smallest, diameter cannot, therefore,
be ignored.

This important factor has called for a critical analysis of the formerly ob-
tained data as well. Thus, two contradictory results were obtained by two
different methods for the radiation of a magnetic dipole”. It may now be
assumed that this was not due to the erroneousness of one of the methods
used, but to the fact that they differently took into account the effect of the
medium adjacent to the moving dipole. Possibly both results are correct,
but they apply to different physical cases. The matter requires, however,
further consideration.

The series of problems dealt with in this paper, despite their diversity,
comprises but the simplest case of radiation in a medium, namely radiation
during which the translational motion of the system may be regarded as
uniform and rectilinear.

Transition radiation

A typical example of radiation in a medium and, notably, during the uni-
form motion of an electric charge, is provided by the so-called transition
radiation. The assertion that there is no radiation during a rectilinear and
uniform motion of an electric charge at a velocity smaller than the phase
velocity of light is correct only under the condition that the velocity of light
along the path of the particle remains unchanged. For example, if a uni-
formly moving charged particle crosses the boundary of two media with
different indices of refraction, there appears transition radiation. Radiation
appears because the jump which the magnitude of the phase velocity of light
undergoes at the boundary of two media is to some extent equivalent to the
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jump in the magnitude of the velocity of a particle. The equivalence to
bremsstrahlung becomes complete in an extreme case, when the particle
moves from vacuum to a metal in which light is absorbed over a length
smaller than the wavelength of the light. The intensity of the transition
radiation is at its maximum in this case. In the optical range of the spectrum
- the only region in which transition radiation occurs - the spectrum and
magnitude of the radiated energy are then exactly identical to those of the
radiation which would have been produced by an electric charge and a
charge of the opposite sign, moving towards it (its electric image in the
metal), and which stop instantaneously at the point of encounter.

The intensity of transition radiation at low velocities is proportional to
the kinetic energy of the particle, and it rises in the region of relativistic
velocities as the logarithm of the total energy. Like bremsstrahlung, it be-
comes sharply directed in this case. It has been suggested that transition radia-
tion might be useful in determining the energy of ultra-relativistic particles.
This is important because it is very difficult to use for this purpose the
Vavilov-Cerenkov effect for ultra-relativistic particles. As is well known, the
angle at which the Vavilov-Cerenkov radiation is directed, and its intensity,
attain in this case a practically constant value.

The use of transition radiation is, however, impeded by the fact that its
intensily is very low. The probability of emission of a photon is of the order
of the fine structure constant, i.e. of the order of a hundredth. If it is not
possible to sum up transition radiation from many plates, observation of an
individual particle by transition radiation may be carried out with but little
efficiency. In this connection we should like to note the peculiarities of tran-
sition radiation at ultra-relativistic velocities. Unlike particles with a low
velocity, transition radiation is almost the same during the incidence of such
a particle from vacuum on a transparent dielectric as during the incidence on
a metal. This is easy to understand by analogy with bremsstrahlung. Indeed,
a change in the velocity of light is equivalent to a slight change in the veloc-
ity of the particle. But even a small change in the velocity of an ultra-
relativistic particle means a great change in ils energy, i.e. great decelera-
tion of the particle. This peculiarity may permit the summing of transition
radiation from the surfaces of many parallel transparent plates in a vacuum.

The second peculiarity consists in the fact that at ultra-relativistic veloc-
ities, the equilibrium field entrained by the particle in a vacuum is formed
along a considerable path length. Consequently, to prevent the intensity of
radiation from being reduced, the vacuum layers between the plates should
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not be less than some preset magnitude. For instance, for a proton with
energy of 10" electronvolts, this minimum distance is of the order of 1 mm,
which is reasonable; but for a proton with energy of 10”electronvolts it
rises to the unreasonable magnitude of a kilomelter.

I have dwelt on the subject of transition radiation in order to emphasize
the peculiarity of the optical phenomena for radiation sources moving in
refractive media, which so greatly depends on the peculiarities of propaga-
tion of light in a substance.

It should be noted that although the theory of transition radiation was
developed by Ginzburg and the author of this lecture” more than ten years
ago, and has since been analysed in a number of works* it has not yet been
studied experimentally. The situation in this case is almost the same as in
the case of the Vavilov-Cerenkov radiation before their papers were pub-
lished. There is no doubt that transition radiation has also been observed on
numerous occasions by various physicists, since the glow of the surfaces of
electrodes under the impact of bombarding particles is well known. But
even today the part played in this glow by luminescence, bremsstrahlung,
and transition radiation has not been elucidated. The most reliable data on
transition radiation have recently been obtained by A. E. Chudakov. Using
the coincidence method, he observed photons emitted from the surface of
a metal foil during the incidence on it of fast electrons from radiophospho-
rus. The intensity of radiation thus found proved to coincide with the
estimated intensity for transition radiation, at least in the order of magni-
tude™™*.

It is also worth mentioning that transition radiation is practically always
an intrinsic part of the Vavilov-Cerenkov radiation due to the limited thick-
ness of the radiator. As shown by V. E. Pafomov for a radiator of very
small thickness this factor should be taken into account”.

* See, for instance, the papers by Garibyan and Pafomov and the references cited
therein™.

**In the book by Jelley, Cerenkov Radiation”, with which T had the opportunity of
becoming acquainted after this paper had been written, there is mention of the fact
that in 1958 the author together with Elliott and Goldsmith observed a radiation emitted
by 1.5 MeV protons incident on a polished aluminium target. On basis of the data on

the intensity and polarization, the investigators concluded that the glow was transition
radiation.
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Radiation spectrum and quantum interpretation of the phenomenon

The radiation of a charged particle uniformly moving at a velocity ex-
ceeding that of light may, as is well known, be fully described by the meth-
ods of classical electrodynamics. The quantum theory of this phenomenon
was first developed by Ginzburg® and then by many other investigators*.
Ginzburg has shown that the classical formula for the cosine of the angle
at which radiation occurs is correct up to a very small correction of the order
of magnitude of the ratio between the energy of the radiated photon and the
total energy of the moving emitter. (Even for an electron the ratio is less
than 10°.) If this slight quantum correction contained in the exact formula
is disregarded, identical relations between the frequency of the radiated light
and the direction of its emission are obtained by both the classical and the
quantum methods. Let us write them down in a quantum form, for a system
possessing a natural frequency ©,™ ,where @,is the frequency in the labor-
atory system of coordinates, that is, wo=w,” V1 — 2.

There is no necessity of assuming in this case that ®,is the only natural
frequency possessed by the system. It may be regarded as a component of
a complex spectrum of frequencies and it should be sufficient to study the
radiation related to this frequency.

If the momentum of the photon, which in a medium should be assumed
to equal nfiw/c, is very small in comparison with that of the emitter, then
the law of momentum conservation during radiation may be expressed as
follows

nhw AE
—_— 0:__

where AE is the change in the kinetic energy of the emitter, and v is its

velocity. From their ratio we obtain the magnitude of the change in the
momentum of the system.

The change in kinetic energy is apparently determined by the energy of
the radiated photon %w and the change in the internal energy of system %w,

A E = hw =+ Hw, )

The term 7w, should be taken with a minus sign if, when emitting the pho-

* See, for example, review”.
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ton, the system passes from an upper energy level to a lower one, that is,
if the energy of the emitted photon is supplied, partly at least, from excita-
tion energy. The plus sign should be used if the system becomes excited in
the process of emission, i.e. if the kinetic energy is spent both on radiation
and excitation.

By combining Eqs. (1) and (2), we obtain

nw =)
TesO== )

Factor 7% has been cancelled out and the equation does not, indeed, contain
anything of a specifically quantum nature. The same result is also obtained
from classical wave analysis.

In Eq. (3) we can distinguish three cases:

Case 1 - Let us assume that

nv
Tcos@-x (4)

Then Eq. (3) is satisfied only if @, = 0. This is precisely a case of the Vavilov-
Cerenkov radiation, while (4) is a well-known condition determining the
direction of emission of light for this radiation. The natural frequency wo
= 0 required for bringing into effect (4) means that the moving system
should contain a source of a time-independent electromagnetic field (an
electric charge, a constant dipole moment, etc.). Consequently, for the Va-
vilov-Cerenkov radiation to take place it is necessary that the constant com-
ponent of the field should differ from zero. In this case Eq. (4) yields the
relation between angle @ and the radiated frequency, inasmuch as the re-
fraction index n(®) is a function of frequency.

Case 2 - Suppose now that the left-hand side of Eq. (4) is less than unity.
Then Eq. (3) may be satisfied only if w, has a minus sign, i.e.

1w @ — Wp
—cos @ =
c

vn
—~cosO <1
v ¢ s (s)

This is nothing else but the D oppler condition for a source of light, moving
in a medium. It has already been obtained by Lorentz when studying the
rptlcs ot moving media.
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Eq. (5) may evidently be expressed in the following ordinary way

Wo
W= ————e e

11— cos @ (53)
c

It determines the frequency when the component of the velocity along a
ray, v cos ©, is less than the phase velocity of light ¢/n for frequency @.

Eqs. (5) or (5a) differfrom the usual Doppler condition for a source of
light moving in a vacuum only in that the velocity of light in a vacuum
has been replaced by the phase velocity ¢/n. If v is small in comparison with
the phase velocity of light, and the dispersion of light is not great in the range
of frequencies close to w,, this does not lead to anything fundamentally new.
There is only a change in the absolute magnitude of the Doppler shift. It is
so obtained as if it had been in a vacuum for a velocity equal to v, i.e.
n times greater. If the dispersion of light in the medium is greal, there arise
important peculiarities. The presence of dispersion should not be ignored
in any medium when the velocities of motion are comparable to the phase
velocity of light. Indeed, with # = constant and for angle O =0, the
quantity (on/c) cos @ would tend to unity with an increase in v while @, as
can be seen from (5a), would tend to infinity. At still greater velocities, the
inequality sign in (5) would not be valid and, consequently, (5) would have
no solution. As a matter of fact, the refraction index of any media becomes,
practically equal to unity at sufficiently large values of w. Hence, the Doppler
frequency in this case is the same as it would have been in vacuum, i.e.
it is certainly finite. In other words, at any velocity v and any value of 9,,
Eq. (5) will have a solution. Moreover, as will be shown below, there may
be not one but several solutions” ("complex" Doppler effect).

Case 3 - The third case takes place when the left-hand side of Eq. (4)
is greater than unity. Then a plus sign should be before @o in Eq. (3), and
thus

nw w —+ w,

—cos O =
c

vn
—cos @ >1
¢

This is a generalization of Doppler’s formula for the case™ when the veloc-
ity of the emitter exceeds the phase velocity of light for a radiated frequen-
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cy™. It determines the « super-light » Doppler frequencies. Like the Vavilov-
Cerenkov effect, the super-light Doppler frequencies appear when the veloc-
ity exceeds some threshold velocity. They are radiated simultaneously with
ordinary frequencies, but only at sufficiently high velocities and within some
range of acute angles.

It can be seen from the above quantum analysis that the plus sign at ®,
in (2) and (6) respectively means excitation of the system. Hence, radiation
of super-light photons occurs not during the transition from the upper, i.e.
excited state into the lower, as in a general case, but quite the contrary, from
the lower into the upper state, the energy being supplied from the kinetic
energy of the translational motion of the system!* Such a radiation, ac-
companied by excitation of the system should take place spontaneously if
the system is in the lower energy state. This is likewise possible as a spon-
taneous transition of the system from the upper energy state into the lower,
accompanied by emission of photons with a frequency salisfying (5). As a
matter of fact, the transition occurs in either case between the same energy
states, and the question as to which of them takes place spontaneously is
wholly determined by the initial state and the requirements of the conserva-
tion laws. In this case Eqs. (5) and (6) are in equal degree consequences of
these laws.

The question regarding Doppler’s effect in a refractive medium may also
be considered within the framework of classical physics. From the viewpoint
of classical physics, the results are interpreted as follows. Oscillations with
natural frequency ®,bring about the appearance of radiation with frequen-
cies which depend on the direction of propagation. It forms a spectrum of
Doppler frequencies, which may be of two types. There is always a spectrum
of radiation with frequencies salisfying Eq. (5), whose reaction on the
emilter causes its damping. Under certain conditions, another spectrum with
frequencies meeting Eq. (6) appears in addition to the first. The reaction
of radiation of these frequencies promotes the building-up of oscillations.
If damping prevails over building-up, oscillations will not arise by them-
selves in a system for which the classical formulae are correct, and if they
existed at the beginning, they will attenuate.

In a quantum system the situation is fundamentally different. The processes
of quantum radiation should be considered separately for spectra of both
* Apparently Eq. (6) may be put down in a form similar to (5a). The difference

consists only in that the sign in the denominator of the right-hand part of Eq. (5a)
should be changed.
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types. Therefore, if a process corresponding to Eq. (6) is possible, it is cer-
tain to take place, i.e. the system will become excited owing to its own
kinetic energy, radiate light, and pass in the usual way to the lower state.
In principle, a two-photon mechanism is also possible, photons of both types
being radiated simultaneously. Hence, as in the Vavilov-Cerenkov effect, a
system possessing a natural frequency of oscillations will spend its kinetic
energy on radiation at super-light velocity™"

This can be formulated in the following way: as is well known, motion
at a velocity greater than that of light is impossible in a vacuum. It is possible
in a medium, but Nature does not lift its ban completely. Any system ca-
pable of interacting with radiation will slow down at a super-light velocity
by radiating light.

Radiation thresholds

It is evident from the above analysis that the radiation spectrum is deter-
mined by the velocity of motion of the system v, its natural frequency @,
and the phase velocity of light ¢/n in a medium in which the radiation is
emitted. Both the Vavilov-Cerenkov effect and the Doppler super-light ef-
fect are possible, as can be seen from (4) and (6) if vn(w)/c > 1.This obvious
condition for the threshold of their appearance means that the velocity of
motion should exceed the phase velocity of light.

This statement, correct for an isotropic medium, determines the threshold
of emission of light of a given frequency ® for which the refraction index
equals n(®). As the refraction index depends on frequency, the threshold is
different for another ®. This justifies raising the question in another way:
under what condition do the Vavilov-Cerenkov effect and Doppler super-
light effect generally become possible in a given medium?*

During radiation in a medium there is yet another peculiarity which like-
wise appears under certain threshold conditions. It consists in the following.

* For the Vavilov-Cerenkov radiation in an isotropic medium, this point regarding
the threshold is elementary, since the latter is determined simply by the maximum
value assumed by the refraction index in the given medium. Of importance for further
consideration is the fact that for a frequency corresponding to #yax, the phase and
group velocities are equal (see Eq. (10)), it being evident that for figy, dnfdw = 0.
Hence the fact that the threshold velocity of motion is equal to the phase velocity means
that it is also equal to the group velocity of light.
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Eq. (3) and, naturally, its sequels (4), (3), and (6), are not linear with
respect to ®. As a matter of fact, they contain the refraction index n(w)
which is a function of the radiated frequency. As a resull, not one but several
values of @, satisfying (3 ) are possible in some cases for given values of ,
v, and ®,. This means that several components of different frequency may

be radiated simultaneously in a given direction. The appearance of such ad-

ditional frequencies, i.e. of the so-called complex effects of radiation, is

possible only under certain conditions. They may arise not only in the super-

light Doppler effect and Vavilov-Cerenkov’s radiation, but also in the or-

dinary Doppler effect subordinated to Eq. (5).

L. I. Mandelstam was the first to draw attention to the fact that the con-
dition under which the complex Doppler effect appeared4 was related to
the magnitude of the group velocity of light. The statement proved to be
of a general natures.

If we consider radiation in the direction of motion, then in all the enu-
merated cases the condition for appearance of the radiation or of its new
components is that the velocity of the emitter should equal the group veloc-
ity of light for a frequency which may radiate (i.e. which satisfies condi-
tion (3)). This threshold frequency should evidently satisfy Eqs. (4), (3),
or (6), depending on the kind of radiation under consideration.

It is well known that in a refractive medium the transfer of radiation en-

Fig. ..
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ergy occurs not with the phase but precisely with the group velocity. Thus
it is not surprising that the group velocity of light is of importance for the
processes of radiation in a medium.

The fact that the radiation threshold is connected precisely with the group
velocily can be explained by some simple qualitative considerations. Let us
assume that the conditions for appearance of the radiation have been ful-
filled. Radiation arises and carries energy away from the emitter. Suppose
furthermore, that the velocity of motion changes, and approaches the thresh-
old velocity. When the threshold is attained, the radiation should disappear,
i.e. removal of energy from the emilter ceases. When the velocity of mo-
tion equals the group velocity of light, this will actually take place, since
there occurs simply a transfer of energy together with the emitter.

The condition of appearance of the complex effect may be easily deter-
mined by analysing the chart in Fig. . The curve in Fig. irepresents de-
pendence of the magnitude of wave vector k(w)=wn(w)/c on the frequen-
cy for some imaginable medium. In addition to curve k(w), Fig. icontains
three straight lines whose equations are

T = s 0 @)
4 = W — Wo

’ v cos @ (8)
w —+ we

az - V COS 0 (9)

The points where the straight lines cross the curve seem to determine at
once the frequencies salisfying Eqs. (4), (5), and (6) respectively.

The tangent of the angle of incline of the straight lines 4, a, a,lo axis ®
apparently equals 1/v cos . Let us assume, in accordance with Fig. 1, that
cos O o, that is, @ < xf2.

The nature of intersection of the straight lines a with curve k(w) may
differ. If we move along the straight line in the direction of increased ®,
the straight line may go over at the point of intersection from the region
underlying the curve (Region I) into the region above the curve (Region
IT). This takes place if the slope of the tangent to curve k(o), i.e. dk/dw, is
less than y =1 /1) cos @ (see, for example, point A, on the straight line a, ).
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On the contrary, if dk/dw >1 /v cos © then there is a transfer from Region
Il into Region I at the point of intersection. Finally, dk/dw =1/v cos @
takes place at the point of tangency.

As can be easily proved, the slope of the tangent to curve k(@) is equal
to the reciprocal of the group velocity of light. Indeed, when there is no
absorption, the group velocity IV, as is well known, satisfies the relationship

o= ram e =il te g (10)

Hence, the group velocity of light for frequencies which can be radiated is
related to the velocity of motion v and cos @ by the relationships*

ILOS—@ <1 transition from I into II (II)
W (w)
v cos &

>1 t iti f II into I
v (w) ransition from II into (12)
vcos 6 =1 tangency (13)
W (w)

At sufficiently large @, the quantity W becomes equal to c. Indeed, the refrac-
tion index tends to unity, and hence curve k(@)= wn/c approaches a straight
line with a slope of 1/c.

The straight lines a rise more abruptly since v < ¢ and consequently

I I

VCOS@ C

Hence, all the three straight lines a at great ® are in Region 1II.
This entails a number of consequences. First of all, it is evident that the
straight line a; will necessarily cross curve k(m), i.e. Eq. (5), as has already

* The magnitude determined by (10) has the meaning of the group velocity of light
only when there is no strong absorption, i.e. in those regions of the spectrum for
which the medium is transparent. The part of curve k(®) corresponding to the region
of anomalous dispersion, in which there is unquestionable dispersion, is shown in Fig.
1by a dotted line. The peculiarities of radiation for frequencies getting into this region
call for special consideration.
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been noted, must always have a solution. As a matter of fact, the straight
line a, passes through point ® = ®,lying on the axis of abscissae, which
means that the straight line must go over somewhere from Region I into
Region 1I. Moreover, it means that at any rate a frequency is radiated for
which inequality (1) corresponding to a transition from 1 into II is ap-
plicable.

The straight lines a,and 4,as might have been expected, do not always
cross curve k(w). This requires that their incline to the abscissa axis should
be sufficiently small. This means that the velocity should be high and angle

should not be large.

At great ® both these straight lines also prove to be in Region 11. It follows
from this that if there are crossings then at any rate, the last of them which
determines the highest of the radiated frequencies corresponds to a transition
from Region I into Region 1I. The result is then again that there is a fre-
quency in the radiation, for which inequality (1) is valid. For forward
radiation, i.e. = o, this means that there is a component for which v
< W and, consequently, for at least a part of the radiation, energy is prop-
agated at a higher velocity than that of the source of lights.

It also follows from the above that if there is a frequency satisfying con-
dition (12) (for instance corresponding to point B on the straight line a,),
the composition of the radiation will infallibly be complex, since there must
be a frequency or frequencies satisfying condition (1). (In the general case
the number of possible crossings for the straight line a, is always odd, and
for the straight line a,always even.)

The boundary of the appearance of radiation or of new components of
radiation is evidently represented by a case when the corresponding straight
line a begins to touch curve k(o). This means the fulfilment of Eq. (13).
With = o we obtain, in agreement with the above, v = W for the thresh-
old frequency.

The dotted line a’ in Fig. 1corresponds to the threshold of appearance
of the complex effect for the ordinary Doppler effect. As seen from the
figure, the frequency begins to split when the slope of the straight line a,
increases in comparison with that of the dotted line. This means that the
complex Doppler effect arises in this case not when the velocity increases
in comparison with the threshold velocity, but, quite the contrary, when it
decreases or when the angle becomes larger (it is worth recalling that the
tangent of the incline of the straight line a, equals I/v cos @). This is explained
by the fact that the complex Doppler effect takes place here only within some
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range of velocities or angles, and the dotted line corresponds to the upper,
and not the lower threshold of the effect.

It has been assumed up till now that angle is acute, i.e. that the product
vcos is positive. What was said above regarding the complex Doppler ef-
fect may also be applied to the case of obtuse angles  but in this case negative
group velocity will have to be taken into consideration. It appears that the
threshold for the appearance of the complex Doppler effect, with > /2
is determined by Eq. (13). Quantity cos is negative in this case, therefore
Eq. (13) is valid only when the quantity IV is less than zero. The import
of negative group velocity for the Vavilov-Cerenkov effect was first in-

16,12b

vestigated by Pafomov™™ who pointed out that such a case should be real
in anisotropic media*. This is a very interesting case. We are accustomed to
the idea that the Vavilov-Cerenkov radiation is directed forward at an acute
angle. This is, however, correct only if the group velocity is positive. If it is
negative, the picture is quite different.

Fig. 2a shows schematically the ordinary case of the Vavilov-Cerenkov

radiation. The phase velocity for radiated light u = ¢/n forms in this case an

* This is related to the fact that in an anisotropic medium the direction of the group
velocity does not coincide with that of the phase velocity. This question is treated in
the next section of the lecture.

© (@)
Fig. 2.
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acute angle  with the direction of velocity v. The equation of electro-
dynamics also permits of the solution schematically represented in Fig. 2b.
The direction of phase velocity, i.e. the direction of wave propagation
forms in this case, too, the same acute angle with a velocity vector. The
waves do not, however, come from the emitter, but towards it. The first
case is interpreted as a radiation of waves, and the second as their absorption.
If there is no source of energy feeding the waves, flowing to the emitter,
then the case of Fig. 2b is not realizable and the corresponding solution
is rejected. But this is correct only if the group velocity is positive, i.e. if
its direction coincides with that of phase velocity (see vector Win Figs.
2a and 2b). The direction of the energy flux coincides in this case with the
direction of phase velocity and, consequently 2a really corresponds to the
radiation of the waves, and 2b to their absorption. In a medium with a
negative group velocity, vector W is so directed as to meet vector u (the
medium is considered optically isotropic, and hence vectors u and IV may
be only parallel or anti-parallel). Therefore, with W < o, Fig. 2c corre-
sponds to radiation of energy, and 2d to its absorption. Hence, if the group
velocily is negative, the direction of the energy flux of the Vavilov-Cerenkov
radiation forms an obtuse angle ,=m— with the direction of the veloc-
ity, and the motion of the waves is directed not from the particle, but, quite
the contrary, towards it.* A similar analysis can also be made of an emitter
with a natural frequency ®o, moving in a medium with a negative group
velocity™.

It can be seen from the above that many substantial peculiarities of radia-
tion in a refractive medium are actually related not only to the magnitude
of the phase velocity of light, but also to the group velocity of light. It may
be expected that the role of the group velocity of light will reveal itself most
distinctly in anisotropic media in which the directions u and IV form some
angle with one another.

Radiation in optically anisotropic media

Radiation of a light source moving in a crystal should possess a number of
features as compared with that in isotropic media. Interest in this range of
* The analysis given in Fig. 2 is similar in many ways to the example given in L. L.

Mandelstam’s lectures on the refraction of light by a medium with a negative group
velocity (Collected Works by L. I. Mandelstam, Vol. 5, p. 463 ).
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problems has enhanced recently in connection with the studies of the pro-
cesses in plasma*. As to propagation of waves, a plasma placed in a magnetic
field is similar to a uniaxial gyrotropic crystal.

The Vavilov-Cerenkov effect in crystals was first investigated theoretically
by V. L. Ginzburg “and then by other investigators (see, for example,
review'). It has not, however, been studied experimentally to this day.

The equation determining the radiated frequency ® remains the same as
in an isotropic medium, i.e, ®is determined by Eq. (4). The magnitude
of the refraction index # in the case of an anisotropic medium depends, how-
ever, not only on the frequency of light, but also on the angle and polariza-
tion. The result is that for the Vavilov-Cerenkov radiation the cone of nor-
mals to the wave surfaces is not circular in this case, as in an isotropic me-
dium, but may have quite an odd shape. Thus the direction of velocity does
not necessarily coincide with the axis of the cone, and in some cases may
even lie beyond the cone®.

Another peculiarity is related to polarization of the light. The Vavilov-
Cerenkov radiation is always polarized. As a rule, polarization of the light
in this phenomenon does not attract attention, since it has not been used
so far in present-day practical application of the radiation. However, from
the viewpoint of the mechanism of the phenomenon, polarization is highly
important. It is worth mentioning, for example, that the radiation of a
magnetic charge, if it exists at all, could be distinguished at once from the
radiation of an electric charge, since in this case the magnetic and electric
vectors change places. The question of polarization of light is also of impor-
tance for the quite real case of radiation of dipoles and multipoles, though
it has not yet been studied experimentally.

The role of polarization is manifested most distinctly in an anisotropic
medium. First of all, one can obtain here, depending on the polarization of
the radiated light, not one, but two cones of wave normals corresponding
to so-called ordinary and extraordinary rays in a uniaxial crystal. Moreover,
the distribution of the radiation intensity is a complex function of the angles
and is related to polarization of the light. The fulfilment of condition (4)
does not suffice to bring about radiation, since the intensity of the waves of
a given polarization may prove lo equal zero. For example, if a particle
moves in the direction of the axis of a uniaxial crystal, the cone of ordinary
rays must disappear in the radiation’.

* Some of the problems connected with plasma are dealt with in I. E. Tamm’s Nobel
Lecture, see this book, p. 470.
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The third peculiarity is related to the fact that in an anisotropic medium
the direction of the ray, i.e. the direction of a narrow beam of light, does
not, generally speaking, coincide with the normal to the wave surface. There
exist such directions of rays in a crystal, for which the normal to the wave
surface forms some angle o with the ray (see Fig. 3 ).

The velocity at which the phase of the wave propagates in the direction
of the ray, as can be seen from Fig. 3, is1 /cosoc times greaterthan the phase
velocily, i.e. u = u/cosoc = c/n cos x. We shall call u” the velocity of the
waves along the ray. It should not be confused with the group velocity of
light, i.e. with the velocity of transfer of light energy which, naturally
enough, is also directed along the ray. The group velocity equals velocity u’
only under the condition that there is no dispersion of light in the medium.
Indeed, the velocity of the waves along the ray does not depend in this case
on frequency, and hence the group of waves moves with the same velocity.

The velocity of the waves along the ray is important for radiation in aniso-
tropic media. Let us consider in this connection the threshold velocity for
the appearance of the Vavilov-Cerenkov effect. The assertion that the Va-
vilov-Cerenkov radiation for a light of frequency ® arises at a velocily
greater than the phase velocity of light with the given frequency implies
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that the medium is isotropic. If this statement be considered applicable to
anisotropic media (which, as will be seen below, is not always the case), it
is necessary, at least, to indicate with which direction of the phase velocity
the velocity of motion is to be compared.

Eq. (@), ie. (vn/c) cos =1, is also valid for anisotropic media, and
in this case ¢/n = u is the phase velocity for the given direction of the normal
to the wave, forming angle  with vector v. As is well known, when the
velocity approaches threshold velocity in an isotropic medium, angle  de-
creases to zero, i.e., the cone of wave normals is compressed in the direction
v.In a crystal, the cone of wave normals is likewise compressed in this case
towards some axis which, as a rule does not, however, coincide with v. If
this axis is represented by the direction of the velocity, the threshold =o
and then we obtain from (4) that v, = ¢/n where ¢/n is assumed for the direc-
tion % = (¢/n) coinciding with 7. Hence, 7 = #. This relationship actually
proves to be correct for boundary velocity in the usual cases of motion in
a uniaxial crystal parallel or perpendicular to the optical axis. It has not,
however, been stressed that it cannot always be applied.

It may be shown that the general condition for the appearance of the
Vavilov-Cerenkov radiation of frequency ® should be formulated in the fol-
lowing way. The threshold velocity of the source of light should equal the
velocity of waves along the ray in the direction of motion. In other words,
the threshold velocity v=1. For the threshold velocity, the direction of
the ray coincides with 7 and not the normal to the wave which forms an
angle o with 7. Hence in the general case, the threshold value is =

In a special case, when the direction of the ray coincides with the wave
normal in an anisotropic medium, i.e., o« =o; % =17. Then we have 3 = u
for the threshold velocity. Finally, in an isotropic medium, where the phase
velocity of light ¢/n is the same in all directions, it is possible to go over
from vectors to scalar quantities, which means that v = u. Hence the well-
known statement that the velocity equal to the phase velocity of light is the
threshold velocity, has a limited field of application. It is a special case of a
more general condition.

The above is easy to explain by using the Huygens principle for plotting
the wave surface of radiation. This procedure is still generally used at present
to describe the Vavilov-Cerenkov effect in an elementary way, and at the
time it was one of the guiding ideas in the creation of its theory. This meth-
od can be easily applied to the case of an anisotropic medium.

The Huygens principle is frequently used in crystal optics to explain the
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peculiarities of behaviour of the so-called extraordinary ray during the re-
fraction of light. The wave surface is found by the Huygens principle as an
envelope of the waves emitted from separate points. Whereas, however, for
an isotropic medium a sphere of radius r= (¢/n) tis plotted around every
point, where tis the time of movement of the waves, a crystal calls for a
different approach. Of importance is the distance covered by the wave from
a given point in the given direction of the ray. The distance equals the veloc-
ity of the waves along the ray, multiplied by time ¢, i.e. #' t. Therefore, the
unknown quantity is represented by the envelope of the so-called surfaces
of the rays plotted around every source of waves and determined by the
equation T=u't.

Let us apply the Huygens principle to the case of Vavilov-Cerenkov radia-
tion in a uniaxial crystal. The velocity of the ordinary and extraordinary rays
is not the same here and, therefore, generally speaking, two cones of waves
are obtained. In order not to encumber the drawing, they are shown on
separate Figs. 4 and 5. We have to consider each point of the particle trajec-
tory as a source of waves. In this case the wave phase is determined by the
instant of passage of the particle through a given point. Let us assume that
al moment t = - {,the emilter was at point A, at moment ¢ = - f,at
point A, at moment ¢ =-t at A, and, finally, at the moment of observa-
tion £ = 0 at point A,

For ordinary rays, the velocity of the waves along the ray, as in an isotropic
medium, is equal to the phase velocity of light ¢/# and does not depend on
the direction. The surfaces of the rays are simply spheres whose radii for
points A, A, A and A are (¢/n) t, (¢/n) t, (¢/n) t, and 0 respectively
(see Fig. 4). The envelope of these spheres evidently represents a cone of

Fig. 4. Fig. 4a.
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circular cross section with the apex at Ay*. Its generatrices lying in the plane
of the drawing are AB and AB'.

According to the Huygens principle, the directions of the rays are defined
by the radius vectors drawn from some centre of the waves to the point of
tangency with the envelope. For example, in Fig. 4 it is AB or AB" coin-
ciding with the generatrices of the wave normal cone for ordinary rays. Thus
the radiation cone is obtained for ordinary rays in the same way as in the
Vavilov-Cerenkov effect in an isotropic medium. The substantial difference
from an isotropic medium is related to the polarization of light and the
distribution of intensity, depending on it. This was not taken into account
in the construction.

From Fig. 4 it is not difficult to determine the magnitude of the threshold
velocity. When the velocity diminishes, the distances between points A de-
crease. The threshold case arises when point A, occupies the position of Aj
on the surface of the sphere. (This case is depicted separately in Fig. 4a.) At
lower velocilies, one of the spheres lies completely within the other and they
do not have a common envelope. In the threshold case, they have only a
common point of tangency Ag. Thus evidently (¢/n) t,= vyt;, ie. vy =
¢/n. The cone of wave normals is compressed in the direction of velocity v,
and the wave cone transforms into a plane perpendicular to the axis of mo-
tion at point Aj (Fig. 4a).

The Huygens principle can also be applied in a similar way to obtain a
wave cone for the extraordinary rays (Fig. 5). The difference consists in that
surfaces of rays ﬁ't3, #'t,, and #'t, instead of spheres are plotted around
points A, A, and A,. The cone enveloping the surfaces with an apex at A
is not circular in the case shown in Fig. 5. The generalrices of this wave cone
AoCand A,C’ lie in the plane of the drawing. The lines perpendicular to
them, for instance A,.D and A,D’ determine the wave normals, and their
length is proportional to the phase velocities. The vectors drawn from A,
to the points of tangency A F and AF" indicate the corresponding directions

* Strictly speaking, such an analysis presupposes that there is a superposition of mono-
chromatic waves. Each point of the trajectory should, therefore, be regarded as a source
of such waves emitted for an infinitely long time. Actually, it is only the summation of
waves of various frequency that produces a light impulse when the particle passes
through a given point. Hence, there exists, of course, not one, but an unlimited
multitude of wave surfaces for a given frequency. The one that is generally plotted is
singled out only by its passage through the instantaneous position of the particle (which
we shall term the wave cone).



464 1958 I.M.FRANK

Fig. 5. Fig. 5a.

of rays, which, as seen from Fig. 5, do not coincide with the wave nor-
mals. It can also be seen from the drawing that the direction of an extra-
ordinary ray for the Vavilov-Cerenkov radiation in a crystal may even con-
stitute an obtuse angle with the direction of velocity (direction AF" in
Fig. 5).

It is not difficult to determine the magnitude of the threshold velocity for
the appearance of extraordinary rays in the Vavilov-Cerenkov radiation,
which, generally speaking, differs from threshold velocity for ordinary rays.
The threshold case occurs when the velocity diminishes to such an extent
that point A, coincides with point Ag. In this case all the surfaces of the
rays lie within each other and have a common point of tangency Ag. It
can be seen from Fig. 5 or 5a showing a threshold case that the threshold
value is v = v,= u’. The wave cone then transforms into plane AD”
and the wave normal forms an angle o with direction v. By tracing what
happens to the cone of wave normals (its generatrices are A,D and AD" in
Fig. 5) during a decrease in velocity, i.e., when point A,, approaches Ag, it
is not difficult to prove that it is compressed not in direction v but in direc-
tion AD”. Hence, in a threshold case in Eq. (4), it may be assumed that
not =obut =o.Then Eq. (4) produces (vn/c) cos o =yie. actually
vV =o¢ncos o=1u

It is worth recalling that with the aid of Figs.4 and 5 we have deter-
mined the threshold of appearance of light of some given frequency ®. The
velocity at which radiation generally appears is determined by a minimal
magnitude of wave velocity of waves along the ray, namely u"=u’_ in a
given medium for a ray directed along the motion. For frequency @’ for which
#' = ' min the velocity of the waves along the ray does not depend on fre-
quency and is thus equal to the group velocity. Hence, we again come to
the conclusion that the threshold is related to the group velocity.
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The analysis of radiation of a system possessing a natural frequency of
oscillations ®,, may also be applied to the case of an optically anisotropic
medium. The same peculiarities are manifested here as referred to in connec-
tion with the Vavilov-éerenkov radiation. The connection between ®, , v,
and ©,is determined, as before, by the same Eqs. (5) and (6) as in an iso-
tropic medium, but now quantity » refers to the direction of a wave normal
at an angle to the velocity.

The dependence of # on the direction leads to the fact that the connection

between and the frequency of radiation ® at preset natural frequency ®,
and velocity v is not elementary. To find , use can be made of the graphic
method suggested by V. E. Pafomov*“for analysing the Vavilov-Cerenkov
effect in crystals, applying it to the case of an arbitraliy o, (see Fig. 6). The
figure shows a section of a surface of wave vectors k(®)={wn)/c for the
given @ in the case of extraordinary rays in a uniaxial crystal. The surface
indicating the dependence on the direction of vectors k (they are oriented
along the normal to the wave) differs from that of refraction indices only
by a constant factor /c (we consider magnitude w as prescribed). Thus, for

<

Fig. 6.
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a uniaxial crystal, the surface represents an ellipsoid of rotation. Let us as-
sume that axis v is the direction of motion of the emitter. Let us plot on
axis v segment OA of length b which equals by, by, or b, depending on
whether the analysis deals with the Vavilov-Cerenkov effect, the Doppler
ordinary effect, or the Doppler super-light effect. Then

[1)]
bo=~ (14)
w — Wy
bi=— (15)
et
bz—— » (16)

At point A which is the end of b we shall plot plane a perpendicular to axis

v. Let us consider the curve where the plane crosses surface k(w) as a section
of some cone with the apex at O. The generalrices of this cone OC and OC’

lie in the plane of the figure. The cone defines the magnitude and direction
of vectors k for light of frequency w appearing in the case under considera-
tion, i.e. for the given kind of radiation with preset w, and v.

Indeed, as can be seen from Fig. 6, OA = bis a projection of vector
OC or OC/, ie. of vector k = wn (w, 0)/5. Hence

on (w, 0)
¢

cos =)

By substituting the values of b from (14), (15), or (16) we obtain identical
equations (4), (5), or (6).

It can be seen from Fig. 6 that the cone of wave normals may actually
be not only asymmetric, but, as has already been mentioned, axis v may
even lie outside the cone.

Plane a does not always cross the surface of k@). This corresponds to the
evident fact that not every frequency is radiated for given v and w,. I b ==‘
=} = OA’ (see Fig. 6), the plane touches the surface and, consequently
b’ = OA’ is a boundary for the appearance of the given frequency  in the
spectrum. Vector k, i.e. the wave normal, coincides in this case with OB. It
can be easily proved that it forms angle awith the direction of velocity, and
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with this, angle © = o is inserted in Eq. (3), we obtain the following
general condition for velocity v, required for the appearance of frequency ®

o ot w

o_vto (1)

u Vo

where u’ is the velocity of the waves along axis v (positive or negative, i.e.
directed along v or opposite to it). In a special case of the Vavilov-Cerenkov
radiation, ®,= o.

Radiation of a system possessing a natural frequency of oscillations and
moving in an optically anisotropic medium was first studied by K. A. Bar-
sukov and A. A. Kolomensky'’. They elucidated a number of peculiarities
of radiation related to the presence of ordinary and extraordinary rays and
the significant role of wave polarization.

It is highly interesting that this seemingly more complex case appears to
present even now some interest from an experimental point of view. Bar-
sukov and Kolomensky made a special study of radiation of radio waves in
the ionosphere which behaves like an optically anisotropic medium under
the action of the earth’s magnetic field. It is important that this medium pos-
sesses strong dispersion at some range of frequencies and that the complex
Doppler effect is possible in it. Kolomensky and Barsukov have pointed out
that this phenomenon may take place in the case of radio waves of appro-
priate frequency, transmitted by an artificial earth satellite moving in the
ionosphere. They found that the Doppler shift of frequency of the order of
ten to a hundred cycles per second should be accompanied in this case by
splitting of the radiated frequency into components of several hundredths
of a cycle per second apart. Apparently, with a well-stabilized frequency of
the transmitter, such splitting could be detected.

I have aimed to prove in my lecture that there is a wide range of problems
related to the radiation of sources of light, moving in refractive media. Ra-
diation of an electric charge moving at super-light velocity in an isotropic
medium, i.e. the experimentally investigated case of the Vavilov-Cerenkov
effect, is, in essence, but a special, though a highly interesting instance in this
realm of phenomena.
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