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Topological Quantum Matter
Nobel Lecture, December 8, 2016

by F. Duncan M. Haldane
Department of Physics, Princeton University

ABSTRAC T

Nobel Lecture, presented December 8, 2016, Aula Magna, Stockholm University. 
I will describe the history and background of three discoveries cited in this Nobel 
Prize: �e “TKNN” topological formula for the integer quantum Hall e�ect 
found by David �ouless and collaborators, the Chern Insulator or quantum 
anomalous Hall e�ect, and its role in the later discovery of time-reversal-invari-
ant topological insulators, and the unexpected topological spin-liquid state of the 
spin-1 quantum antiferromagnetic chain, which provided an initial example of 
topological quantum matter. I will summarize how these early beginnings have 
led to the exciting, and currently extremely active, �eld of “topological matter.”

What we now know as “Topological quantum states” of condensed matter
were �rst encountered around 1980, with the experimental discovery of 

the integer (Klitzing et al., 1980), and later fractional (Tsui et al., 1982) quantum 
Hall e�ects in the two-dimensional electron systems in semiconductor devices, 
and the theoretical discovery of the entangled gapped quantum spin-liquid state 
of integer-spin “quantum spin chains”(Haldane, 1981a, 1983a,b), which was later 
experimentally con�rmed (Buyers et al., 1986) in crystals of the organic chain 
molecule NENP. �e common feature of these discoveries was their unexpect-
edness and the surprise that they engendered: they did not �t into the then-
established paradigms of “condensed matter physics” (previously known as “solid 
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state physics”). It was not at the time apparent that there could be any connection 
between these two surprises, but now, especially following the classi�cation work 
of Xiao-Gang Wen (Chen et al., 2013), we understand that their common feature 
is that they involve “topologically non-trivial” entangled states of matter that are 
fundamentally di�erent from the previously-known “topologically trivial” states, 
and this lies at the heart of their unexpected properties.

Topology is the branch of mathematics originally used to classify the shapes 
of three-dimensional objects such as soccer balls, rugby (or American foot-
ball) balls and co�ee mugs (without a handle), which are “topologically trivial” 
surfaces without holes, and bagels, doughnuts, pretzels, and co�ee cups with a 
handle, which are “non-trivial surfaces” with one or more holes. An ant crawling 
on such a “non-trivial” surface could walk around a closed path (one that ends 
at the same point that it started) that cannot be smoothly shrunk to a tiny circle 
around a point on the surface. �ese original ideas of topology were greatly gen-
eralized and made abstract by mathematicians, but the central idea, that things 
are only “topologically equivalent” if they can smoothly be transformed into each 
other, remains as its key idea. �e essential feature is that di�erent topologies are 
classi�ed by whole numbers, like the number of holes in a surface, which cannot 
change gradually.

Entanglement is a central property of quantum mechanics whereby, if the 
state of a system is described in terms of the quantum state of its parts (typically 
if it is spatially separated into two halves), a measurement of a property local-
ized in one of the two halves a�ects the state of the other half of the system. �e 
“topology” of the “topological states of matter” celebrated in this Nobel Prize is 
more abstract that that of the shapes of everyday objects such as soccer balls and 
co�ee cups, but distinguishes di�erent types of “quantum entanglement” that 
cannot smoothly be transformed into one another, perhaps while some protec-
tive symmetries are being respected. In this case, a quantum state has “topologi-
cally trivial” entanglement if it can be smoothly transformed to a state where 
each part of the system is in an independent state where a measurement on that 
part has no e�ect on other parts of the system (this is called a “product state”). 
In the case of quantum spin systems (descriptions of non-metallic magnets), it 
turned out that almost all previously theoretically-described states were “topo-
logically trivial,” so there was no precedent for the surprising properties of a 
non-trivial “topological state.”

It took some time for the general understanding that there was was a large 
class of new “topological states of matter” to emerge. An early milestone was the 
discovery (�ouless et al., 1982) by David �ouless, and collaborators Mahito 
Kohmoto, Marcel den Nijs and Peter Nightingale (TKNN) of a remarkable 
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formula that was soon recognized by the mathematical physicist Barry Simon 
(Simon, 1983) as just being the “�rst Chern class invariant” from the abstract 
mathematical topology of so-called “ U(1) �ber bundles,” with an essential con-
nection to a contemporaneous development, the “adiabatic quantum phase” dis-
covered in 1983 by Michael Berry (Berry, 1984). As I am also presenting part 
of David �ouless’ Nobel-Prize-winning work, I will describe this �rst in my 
lecture, and begin with the quantum Hall e�ect, for which two Nobel Prizes 
(1985 and 1998) have already been awarded.

In the presence of a uniform magnetic �eld with �ux density B, charge-e 
electrons bound to a two-dimensional surface through which the magnetic �eld 
passes move in circular “Landau orbits.” According to quantum mechanics, this 
periodic motion gives rise to a discrete set of positive energy levels of the elec-
trons called “Landau levels.” In the simplest model for these Landau levels, the 
period T = 2π/ωc of the circular motion is independent of the radius of the 
circular motion, and the allowed energies of the Landau levels are those of a 
harmonic oscillator, (n + 12)ħωc, where ωc = eB/me is the so-called “cyclotron 
frequency.” Assuming that the surface has translational symmetry, so all points 
on the surface are equivalent, the energy of each state in a Landau level is inde-
pendent of the position of the center of the orbit, and the Landau level is highly 
(macroscopically) degenerate. �e number of independent one-particle states 
in the Landau level is proportional to the area A of the system, in fact there are 
BA/Φ0 states in each Landau level, where Φ0 = h/e is the (London) quantum of 
magnetic �ux.

�e Pauli principle says that not more that one electron can “occupy” any 
independent one-particle state, and the Landau levels are somewhat analogous to 
the levels (1s, 2p, 3d . . .) of the simple quantum mechanical model of the atom, 
familiar from high-school chemistry. However, instead of these levels accom-
modating �nite and �xed numbers (2, 6,10. . .) of states available to be “�lled,” 
the number of states in a Landau level is huge (perhaps of order 1012 in a real 
sample) and varies with the magnetic �eld. Since the number of mobile elec-
trons of the 2D surface is essentially �xed, it could in principle be possible to 
get things “just right” by “�ne-tuning” the magnetic �eld so that in the ground 
state of the system, one or more Landau levels are completely �lled, and the rest 
are completely empty, so that an energy gap separates the energy of the “highest 
occupied state” (the “HOMO” in quantum chemistry) and the “lowest unoccu-
pied state” (or “LUMO”), making the system analogous to an intrinsic (undoped) 
semiconductor. Under these arti�cial “toy model” conditions, a simple calcula-
tion of the Hall conductivity σxy of the the system would indeed reproduce the 
quantum Hall e�ect with the universal value σxy = ne2/h (that depends only on 
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material-independent fundamental constants and a whole number n, which is 
the number of occupied Landau levels), that would correspond to the results 
measured by von Klitzing.

�e �aw in this näive explanation of the integer QHE is that it requires 
exquisite �ne-tuning of the strength of the magnetic �eld. In contrast, it was the 
insensitivity to the �ne-tuning of the magnetic �eld strength that alerted von 
Klitzing to the e�ect. He “switched on” the �eld to apply it to a device through 
which a �xed current was �owing stabilized by a constant current source, and 
observed that when things stabilized, a digital voltmeter always showed the same 
Hall voltage across the sample to many signi�cant �gures. (�e story is told that 
he �rst thought the voltmeter was broken!) Of course, each time the magnetic 
�eld was “turned on” was di�erent, so the �nal �eld would never have been the 
same on each run of the experiment, and certainly would never have “acciden-
tally” taken the precise “magic value” of the näive explanation. It is fortunate 
that von Klitzing switched on the magnetic �eld with a �xed current through 
the sample, rather than switched on the current at �xed �eld, as the coincidence 
of the unchanged digital voltmeter readings would then never have happened!

�e real samples, though comparatively clean, do not have the translational 
invariance that makes each state in a given Landau level have exactly the same 
energy. A local electric potential at the center of a given circular Landau orbit 
varies randomly from point to point, sometimes raising and sometimes lowering 
the energy, “broadening” the Landau level. �e initial attempts to explain the 
e�ect focused on this e�ect of disorder, and found that, while two-dimensional 
electron systems with disorder generally have “localized” states, this is modi�ed 
in a magnetic �eld. In this case, the centers of the Landau orbits slowly precess 
(in opposite senses) around either local minima or local maxima of the poten-
tial, corresponding to localized states, but there is an energy at the center of 
the broadened Landau level at which the centers of the orbits move along open 
snakelike paths, and the states at that energy are “extended” as opposed to “local-
ized.” In this picture, there is no gap between the “HOMO” and the “LUMO” 
which have equal energies (now called the “Fermi energy”), and, as the magnetic 
�eld strength is changed, the Fermi energy moves to keep the number of occu-
pied states constant, but the integer n measured by von Klitzing only changes 
when the Fermi energy goes through the special energy at which extended states 
exist. �is provided an explanation in terms of the somewhat arcane theory of 
localization that at �rst sight is not obviously topological, but what is now obvi-
ous as a very characteristically topological property emerged when Bert Halperin 
pointed out the importance of edge states (Halperin, 1982).
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�ese edge states are easily seen as semiclassically as counterpropagating 
“skipping orbits” that precess around the boundary of the system in the opposite 
sense to that of the Landau orbits, when a particle in a Landau orbit intersects the 
boundary, and bounces o� it (see Figure 1). Even without disorder in the interior 
of the disk, so that the energy gap between Landau levels remains, there is a con-
tinuous distribution of energy levels at the edge of the system that pins the Fermi 
level and accommodates the “spectral �ow” of states between Landau levels as 
the �eld magnetic strength is changed, and removes the need for “�ne tuning” 
of the magnetic �eld to have an energy gap in the interior of the sample. While 
the number of states in a Landau level changes with magnetic �eld strength, the 
number of states cannot change, so the states must �ow between Landau levels: 
the gapless edge states provide the necessary “plumbing” connections between 
the Landau levels so states can be redistributed between them as the magnetic 
�eld changes.

�e unavoidable edge states that transport particles in one direction only 
around the edge allow the robustness of the QHE to be understood in terms of 
the boundary of the system, but it is also valuable to understand it in terms of 
the bulk properties of the interior of the system. �is is where the TKNN for-
mula found by David �ouless and collaborators (�ouless et al., 1982) enters 
the story. �ouless was inspired by the famous “Ho�stadter butter�y”’ spectrum 
(Hofstadter, 1976) that results when there is a periodic potential on the 2D sur-
face as well as magnetic �ux (Figure 2). In this case, the energy band struc-
ture can be solved when the magnetic �ux through the unit cell of the periodic 

• counter-propagating “one-
way” edge states (Halperin)

• confined system with edge 
must have edge states!
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pinned at edge

don’t need to fine-tune
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FIGURE 1. Simple energy-level picture for the integer quantum Hall e�ect, with an energy 
gap in the bulk stabilized by pinning of the Fermi level by gapless edge states. (�e energy 
levels are show as as function of radius in a disk-shape sample).



48 The Nobel Prizes

potential is a rational number p/q, where p and q are relative prime numbers with 
no common factors. �e solution depends very delicately on the precise values of 
p and q, as it must be solved in an enlarged “magnetic unit cell” through which 
the magnetic �ux must be an integer in units of Φ0. �e e�ect of the magnetic 
�eld is that each zero-�eld energy band that occurs in the absence of a magnetic 
�eld splits up into q energy bands, so that in going from a �ux of 1/3 per unit cell 
to 100/301, what is one band at �ux 1/3 splits up into 100 much narrower bands 
even though the �ux change is very small!

A very clear argument formulated by Robert Laughlin (Laughlin, 1981) had 
already shown that in the absence of electron-electron interactions, if the Fermi 
level is inside a gap of the bulk electronic spectrum, the Hall conductivity σxy in 
the low-temperature limit T → 0 had to be an integer multiple of e/Φ0 = e2/2πħ. 
In the bottom le�-hand corner of the “Hofstadter butter�y,” where the magnetic 
�ux through the unit cell is very small, the spectrum resembles that of simple 
Landau levels, with extremely narrow �at bands corresponding to a slightly wid-
ened Landau level, separated by large gaps. In this limit, the integer is just given 
by the number of �lled Landau levels. But as the �ux increases, the

FIGURE 2. �e “Hofstadter Butter�y” spectrum of electrons on a periodic lattice plus a 
uniform magnetic �eld, showing energy levels as a function of magnetic fux through a 
unit cell. �e structure in the lower le� corner becomes that of a system of simple Landau 
levels. Colors in gaps between subbands represent the di�erent integer quantizations of 
the Hall e�ect if the Fermi level is in that gap. (Colored spectrum provided by D. Osadchy 
and J. Avron).
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Landau levels split up into an intricate pattern of sub-bands which are sepa-
rated by many more gaps, which open and close as the magnetic �eld changes. 
When the Fermi level is in one of these new gaps, the question posed by TKNN 
was, what is the integer that de�nes the low-temperature Hall conductivity?

Even though TKNN were working in the enlarged “magnetic unit cell,” 
the Bloch theorem remained valid, and showing the electronic wavefunctions 
had the form

 Ψkn(r )=un(k ,r )e
k⋅r  (1)

where un(k,r) is a periodic function of r de�ned in the magnetic unit cell (MUC). 
Here k is a “Bloch vector” de�ned in the (magnetic) “Brillouin zone” (BZ) which 
in 2D is topologically equivalent to a torus, or doughnut shape. Using the funda-
mental Kubo formula for electrical conductivity, they found the formula
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Here n labeled the occupied electronic bands below the Fermi level. �e 
remarkable property was that the integral of each periodic function Fn

xy(k) over 
the magnetic Brillouin zone was 2π times an integer, in agreement with Laugh-
lin’s result. TKNN realized that this had to be so, because Fn

xy(k) could be written 
in the form
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leading to the key expression, as an integral around the Brillouin zone bound-
ary (BZB) :

 
σ xy = e2
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I learned from Marcel den Nijs and Peter Nightingale that their recollection 
is that the inclusion (in a single paragraph) of this remarkable explicit general 
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formula in the paper (rather than formulas very speci�c to the Hofstadter 
model, which were the main aim of the paper) emerged as an “a�erthought” 
while writing the paper! Another quote from den Nijs is that it was “the genius 
of David �ouless to choose the periodic potential generalization [to broaden 
the Landau level] rather than the random one, that was the essential step.” �is 
shows the power of choosing the right (and tractable) toy model for which a full 
and explicit calculation can be done. While there has been continuing interest to 
date in achieving a physical realization of the Hofstadter model, it had no relation 
whatsoever to the physical samples in which the integer quantum Hall e�ect was 
seen, for which the essentially intractable random potential was the physically-
appropriate model, and the apparently-natural problem to study.

Shortly a�er the TKNN paper was published, Michael Berry discovered 
his famous geometric phase (Berry, 1984) of adiabatic quantum mechanics. In 
Berry’s classic example, a spin with quantum number S is aligned along an axis 
represented by a unit vector Ω̂, with a direction that is slowly changed with 
time, de�ning a closed path on the unit sphere that �nally returns to its original 
direction. Berry’s result was that, in addition to the expected change of phase of 
the state with a rate proportional to its energy, there is an additional “geometric” 
change of phase that depends only on the geometry of the path, in this case given 
by the solid angle ω enclosed by the path (the area “enclosed” by the closed path 
on the surface of the unit sphere) times S. Looking at this more carefully, one 
sees that the notion of the area enclosed by the path is ambiguous, and the solid 
angle ω that it subtends is ambiguous up to multiples of 4π, but the physically-
meaningful Berry phase factor exp iSω is itself unambiguous because 2S is an 
integer. �e in�uence of Berry’s discovery of the geometric phase on modern 
developments in quantum theory cannot be overemphasized, and many consider 
that it deserves to get a fuller exposition in a future lecture in this series.

Both Berry’s work and the TKNN formula were then brought to the atten-
tion of the mathematical physicist Berry Simon, who recognized (Simon, 1983) 
the connection between these formulas whereby the Berry phase could either be 
viewed as the integral of a “Berry connection” (analogous to the vector poten-
tial of electromagnetism) around a path, or by Stokes’ theorem, as the integral 
of a “Berry �ux” or “Berry curvature” through a surface bounded by the path. 
Furthermore, if the surface is a closed surface with no boundaries, its total 
Berry curvature or �ux must be an integer multiple of 2π, and this integer is a 
topological invariant, the “�rst Chern class,” technically of a “U(1) �ber bundle” 
(the mathematical characterization of a quantum mechanical wavefunction) on 
a closed 2D manifold. �is theorem is the close analog of the original Gauss-
Bonnet theorem for integrals of the intrinsic (Gaussian) curvature over a 2D 
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surface. If the surface is closed, like a sphere or a doughnut, the Gauss-Bonnet 
topological invariant counts the number of holes (the “genus” of the surface): it 
is this precise mathematical analogy that has given rise to the ubiquitous use of 
the movie showing a bagel or doughnut’s topological equivalence to a co�ee cup.

�e identi�cation of the TKNN formula as a topological invariant marked 
the beginning of the recognition that topology would play an important role in 
classifying quantum states themselves, in addition to the early discovery of the 
importance of topological excitations in the classical physics of the Berezinsky-
Kosterlitz-�ouless transition (see J. Michael Kosterlitz’s Nobel Lecture in this 
book) �is invariant (the “Chern number” or “�rst Chern class,” given by 12π
times the integral of a Berry curvature over a 2D manifold) would remain the 
only known invariant in quantum condensed matter systems until the 2004 dis-
covery by Kane and Mele (Kane and Mele, 2005) of a new “Z2” invariant in time-
reversal-invariant topological insulators, that led to the current explosion of new 
experimental and theoretical discoveries about topological states of matter.

�e TKNN result was obtained for the bandstructure of electrons in uni-
form magnetic �eld with Landau levels that were split into Bloch bands by a 
periodic potential. In 1988, while analyzing a proposed realization of the “parity 
anomaly” by Fradkin, Dagotto and Boyanowsky (Fradkin et al., 1986) I realized 
that the necessary condition for a quantum Hall e�ect was not a magnetic �eld, 
but just broken time-reversal invariance. �is perhaps should have been seen 
as implicit in the TKNN result, but had not apparently been previously noted. 
I came up with a very simple model (Haldane, 1988) (see Figure 4) based on “a 
two-dimensional single sheet of graphite” (purely a “toy model” at that time, as 
the possibility that one day graphene sheets would be made then seemed like 

• Shortly after the  TKNN paper was published, 
Michael Berry (1983) (Lorentz Medal, 2014) 
discovered his famous geometric  phase in 
adiabatic quantum mechanics.    

• (The Berry phase is geometric,  not topological, but many consider this 
extremely influential work a contender for a Nobel prize).

S
ω
ΓΩ̂

• Berry’s example: a spin S aligned along an axis

direction of spin moves on closed
path on unit sphere

eiΦΓ = eiSω

solid angle enclosed is ambiguous modulo 4π
 so 2S must be an integer

Berry phase

FIGURE 3. Berry phase for the adiabatic evolution of the state of a quantum spin aligned 
along a moving axis. �e Berry phase ΦΓ is the spin quantum number S times the solid 
angle subtended by the closed path Γ of the alignment axis Ω̂. A�er the axis returns to 
its inital orientation, the �nal quantum state is the initial state times the factor exp iΦΓ
that depends geometrically on on the path taken. Since the “solid angle subtended by the 
path” is ambiguous modulo 4π, 2S is topologically required to be an integer (which it is).
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“science �ction”) which I called a model for the “quantum Hall e�ect without 
Landau levels,” based on standard Bloch states unlike the esoteric �eld-depen-
dent ones of the Hofstadter model. �is is now called the “quantum anomalous 
Hall e�ect” or “Chern insulator.”

�is state may also be called the �rst topological insulator, albeit one with 
broken time-reversal symmetry. It turns out that in 2D graphene, the “Dirac 
points” at the corners of the Brillouin zone where the conduction and valence 
band touch are stable only if both time-reversal and spatial inversion symmetry 
are unbroken, in which case the Berry curvature vanishes identically, and Berry 
phase factors for closed paths in the Brillouin zone are topological, with values 
exp iφ = ±1, depending on whether their winding numbers around the Dirac 
points are even or odd. A gapped non-topological insulator state, investigated 
previously by Semeno� (Semeno�, 1984), results if spatial inversion symmetry is 
broken. In contrast the toy model I devised opens up a gap at the Dirac points to 
give a quantum Hall state by breaking time-reversal symmetry, through giving a 
chiral phase to second-neighbor hopping between states on the same sublattice. 
Once the gap opens and breaks the connection between conduction and valence 

FIGURE 4. �e simple graphene-like tight-binding “toy model”(Haldane, 1988) for the 
“broken-time-reversal topological insulator” or “Chern Insulator” that exhibits a zero-
�eld “quantum anomalous Hall e�ect.” Electrons “hop” along nearest-neighbor bonds 
(solid lines) with a real matrix element, and along second-neighbor bonds (dashed lines) 
with a complex matrix element, which has a postive phase for hopping in the direction of 
the arrow. Two conjugate copies (one for up-spin, one for down-spin electrons) were later 
combined by Kane and Mele to model a time-reversal-invariant topological insulator. �e 
complex phases for hopping between second-neighbors introduces broken-time-reversal 
symmetry, which could come from a ferromagnetically-ordered magnetic dipole at the 
center (∗) of each hexagonal cell, pointing normal to the 2D plane. �e dipoles give rise 
to di�erent magnetic �ux through regions a, b, and c of the unit cell, but no net magnetic 
�ux, leaving the standard Bloch structure intact.
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bands in the interior of the system, they individually have opposite-sign Chern 
numbers ±1, and undirectional edge states are present. �is is conveniently seen 
on the “zig-zag” edge, where in the absence of second-neighbor hopping, an 
zero-energy edge state spans one third of the surface Brillouin zone, connecting 
the projected Dirac points in a way reminiscent of the recently discovered “Fermi 
arc” surface states that connect the projected Dirac points of 3D Weyl semi-
metals found recently by Ashvin Vishwanath and coworkers (Wan et al., 2011). 
When a gap opens, whether by breaking inversion symmetry, time-reversal sym-
metry, or both, the edge states must connect to either the valence or conduction 
band at each of the now gapped or “massive” Dirac point, leading to four possible 
outcomes (see Figure 5).

�is simple toy model has proved very fruitful: rather surprisingly, while the 
original model was for charged fermions, it was translated from the language of 
electrons to that of neutral bosons and a photonic crystal (Haldane and Raghu, 
2008), showing how topological “one-way” edge states could occur there too, 
initiating the growing �eld of topological photonics, and has been implemented 
experimentally with microwave-scale photonics.

In 2004, the possibility of a time-reversal-invariant analog of the Hall e�ect 
(the “spin-Hall e�ect”) was under discussion, and a time-reversal invariant (TRI) 
model was considered by Charles Kane and Eugene Mele (Kane and Mele, 2005), 
who combined two conjugate copies of my model, one for spin-up electrons for 
which the valence band had Chern number ±1 and one for spin-down electrons 
where the valence band had the opposite value ∓1; on the edges, spin-up and 
spin-down edge modes propagated in opposite directions. Since the total Chern 

π 2πk

E

Broken inversion

Broken time-reversal
(Chern insulator)

0

• gapless graphene “zig-zag” edge

• gapless graphene “zig-zag” 
edge modes

FIGURE 5. “Zig-Zag” edge of graphene a�er perturbation by terms that break inversion or 
time-reversal symmetry. �e unperturbed edge has an edge state joining the projections 
of the two Dirac points where the �lled valence band (red) touches the empty conduc-
tion bands (green). When a gap is induced by the perturbation, there are four ways the 
edge-state can be connected, two of which are topological, and connect conduction and 
valence bands.
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number of the valence band vanished, there was no quantum Hall e�ect. Naively, 
it might have been expected that the gapless edge modes were not protected 
from backscattering and mixing, thus becoming gapped, if spin-non-conserv-
ing Rashba-type spin-orbit coupling was added to the system. However Kane 
and Mele discovered by a numerical calculation that, so long as time-reversal 
invariance was unbroken, the edge modes were in fact protected by a previously-
unexpected “Z2” topological invariant related to Kramers degeneracy. �is new 
invariant had a 3D generalization discovered independently and simultaneousy 
in 2007 by Joel Moore and Leon Balents (Moore and Balents, 2007), Rahul Roy 
(Roy, 2009), and Liang Fu, Kane and Mele (Fu et al., 2007), which led to the 
experimental discovery of the 3D time-reversal-invariant topological insula-
tors (TI). �is �nally led to the reported experimental realization (Chang et al., 
2013) by QiKun Xue’s group at Tsinghua University, Beijing, of the quantum 
anomalous Hall e�ect in thin �lms of TRI TI’s which had been doped with mag-
netic material.

I now turn to the other (1981) discovery recognized by this Nobel prize: the 
novel quantum spin liquid states of the one-dimensional integer-spin antifer-
romagnets, which (for odd integral spin) have recently been classi�ed by Xiao-
Gang Wen and collaborators (Chen et al., 2013) as “symmetry protected topo-
logical states” (SPT states), where the protective symmetries are time-reversal 
invariance and spatial inversion symmetry. �e conventional magnetic ground 
states generally studied prior to 1981 were typically unentangled states, usually 
with long-range magnetic order, that could be modeled as a direct product of 
independent states on each sites, such as a ferromagnet (. . .↑↑↑↑↑↑. . .) or a 
N´eel antiferromagnet (. . .↑↓↑↓↑↓↑. . .). �e spin con�gurations shown have 
spins aligned parallel or antiparallel to the z-axis, but in the case of Heisenberg 
(isotropic) magnets these states spontaneously break rotational symmetry, and 
the alignment axis can point in any direction. In the case of the Heisenberg fer-
romagnet, the alignment direction is the direction of a macroscopic conserved 
angular momentum vector, and the conservation law for angular momentum of a 
rotationally-invariant system protects the ferromagnetic “order parameter” (the 
alignment direction) against deviation by zero-point �uctuations.

However, in the antiferromagnetic case, there is no conservation law to give 
protection against zero-point �uctuations, �e celebrated Mermin-Wagner theo-
rem that posed the key paradox in the case-of the �nite temperature Kosterlitz-
�ouless transition provides a similar result for quantum systems in one spatial 
dimension: without protection by a conservation law, the ground state of a quan-
tum system with a continuous symmetry cannot exhibit long-range order of an 
order-parameter that breaks that symmetry. In higher dimensions, Heisenberg 
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systems can exhibit antiferromagnetic broken symmetry ground states with gap-
less collective Goldstone-mode excitations known as (antiferromagnetic) spin 
waves that are small harmonic �uctuations of the N´eel order-parameter around 
its uniform ground state con�guration. But, if the assumption of long-range 
N´eel antiferromagnetic order is made in the case of the one-dimensional spin-S
antiferromagnet, it is easily found that the e�ect of the harmonic zero-point 
�uctuations would be to destroy the assumed long-range order.

At this point the power of exact (but not fully understood) mathematical 
results to sow confusion enters the story! In 1931, before he went on to dis-
cover how nuclear fusion powered the sun (and later to become David �ou-
less’s thesis advisor at Cornell), Hans Bethe also worked on the one-dimensional 
Heisenberg chain as a “toy model” for magnetism, and discovered a remarkable 
“Ansatz”(Bethe, 1931) that provided exact solutions for eigenstates of the 1D 
model with S = 12 and nearest-neighbor exchange, allowing the eigenvalue spec-
trum to be explicitly obtained. Unfortunately, it took more than sixty years for 
the underlying special mathematical structure of the model to be understood, 
and in the 1970s, only energy levels and thermodynamic properties could be 
extracted from the exact solutions, but not the correlation functions. However, 
the spectrum of low-energy eigenvalues super�cially resembled the predictions 
of spin-wave theory with the only apparent change being that the speed of long-
wavelength spin waves di�ered from the predictions of spin-wave theory by a 
factor of 12π.

While the details of Bethe’s Ansatz were somewhat arcane and mysterious, 
this was generally taken as con�rmation that the spin-wave description was 
more-or-less correct despite the known destruction of true long-range order 
by quantum e�ects. In fact, we now know that the elementary excitations of the 
model that Bethe solves have no relation whatsoever to spin waves: they are spin-12
topological excitations (Faddeev and Takhtajan, 1981) that are created in pairs, 
and now known as “spinons,” but even in the 1970s it ought to have been noticed 
that, when expressed in terms of the velocity of long wavelength excitations, the 
speci�c heat predicted by spin-wave theory was exactly twice the exact result 
extracted from the Bethe Ansatz, implying no relation of any kind between the 
spin-wave theory and low-energy excitations of Bethe’s solvable model.

To get around the long-standing intractability of the problem of extract-
ing correlation functions from Bethe’s solution, new techniques for treating the 
problem emerged in the early 1970’s from the work of Alan Luther and Ingo 
Peschel. Again old work (even older than Bethe’s!) was important: they used the 
Jordan-Wigner (Jordan and Wigner, 1928) transformation that maps the one-
dimensional magnet with nearest-neighbor exchange into a model of spinless 
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fermions that move in one dimension by hopping between nearest neighbor sites 
on the lattice, with interactions between particles on neighbor sites. When the 
Heisenberg exchange coupling J

!
Sn ⋅
!
Sn+1  is decomposed into JxSx

nSx
n+1 + JySy

nSy
n+1

+ JzSy
nSy

n+1, with Jx = Jy = Jxy, the S = 12 “quantum XY” model with Jz = 0 is mapped 
into a non-interacting free-fermion model that can be completely and explicitly 
solved to extract all physical properties.

In the mid-1960s, Joaquin Luttinger (Luttinger, 1963) had noticed that a 
“toy model” of interacting spinless fermions with a linear Dirac-like dispersion 
and an interaction restricted to low momentum-transfer forward scattering 
should be solvable using the “Tomonaga bosons” found by Sin-itiro Tomonaga 
(Tomonaga, 1950). �ere were problems with Luttinger’s solution, which was 
subsequently elucidated by Daniel Mattis and Elliott Lieb (Mattis and Lieb, 
1965), and from this came the remarkable “bosonization” technique (represen-
tation of one-dimensional fermions in terms of Tomonaga’s harmonic oscillator 
modes) explicitly formulated by Schotte and Schotte (Schotte and Schotte, 1969) 
in their 1969 simpli�ed treatment of the “X-ray edge singularity” problem.

In 1975, Luther and Peschel (Luther and Peschel, 1975) adapted the new 
“bosonization” techniques to treat the easy-plane antiferromagnet with non-zero 
Jz = λ|Jxy|, with |λ| < 1, which they mapped into a “(1+1)-dimensional” e�ective 
quantum �eld theory could be treated by the “bosonization” mapping to a har-
monic oscillator problem. �is treatment was precisely equivalent (a�er a “Wick 

• This converts the spin-1/2 chain into a 
fermion problem

H =
∑

i
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+
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FIGURE 6. �e Jordan-Wigner transformation maps the S = 12 Heisenberg chain with 
zero magnetization into a half-�lled interacting band of spinless fermions, where 4kF is 
a Bragg vector.
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rotation” from (1+1)-dimensional Lorentz-invariant space-time to 2-dimen-
sional Euclidean space) to the low-temperature “topologically-ordered” phase 
of the classical 2D XY model which Kosterlitz and �ouless were also studying 
at that time, with Néel correlations that decayed algebraically with non-universal 
power laws, where for large |n − n′|,

 
Sn
xS ′n

x = Sn
yS ′n

y ∝(−1)n− ′n n− ′n −η ,  Sn
zS ′n

z =∝(−1)n− ′n n− ′n −η−1

 (3)

where η varied with the coupling-constant ratio λ. Furthermore, introducing full 
“XYZ” anisotropy (Jx!= Jy) maps the model to a massive �eld theory (the “sine-
Gordon” model) with a excitation gap that depends algebraically on Jx − Jy with 
an exponent �xed by η.

By that time Bethe’s exact solution of the S = 12 isotropic Heisenberg “XXX” 
model (Jx = Jy = Jz) had been extended to the full XYZ model by Rodney Baxter, 
following the identi�cation of the Yang-Baxter algebra as the key ingredient that 
allowed Bethe’s Ansatz to solve the model. Luther and Peschel were able to use 
this to indirectly obtain the value of the correlation exponent η as a function of 
λ for the easy plane “XXZ” model (|λ| ≤ 1). �ey found that for positive (antifer-
romagnetic) Jz, η increases from 12 at the fully-solvable “free-fermion” XY point 
with Jz = 0, reaching the consistent value η = η−1 = 1 at the antiferromagnetic 
Heisenberg “XXX” point λ = 1, while for negative (ferromagnetic) Jz, it decreases 
to zero when λ = −1, where the ground state develops long-range order with a 
conserved order parameter. Notably, the Luther-Peschel �eld-theory treatment 
failed to explain the gap that opens for λ > 1, when the model changes from an 
an easy-plane to an easy-axis antiferromagnet.

In 1979 I was working on the precise formulation of the bosonization 
method and found (Haldane, 1981b) that the zero-momentum modes of the 
fermion density needed to represented by action-angle variables as opposed 
to Tomonaga’s harmonic oscillator modes which represented the modes car-
rying �nite momentum. �ese action-angle degrees of freedom are topological 
in nature, and resolved the “mystery” of how one-dimensional fermions could 
apparently be represented in terms of “bosons” (harmonic oscillator modes): the 
representation in fact is constructed using harmonic oscillators plus topologi-
cal winding-number degrees of freedom. �is meant that the detailed structure 
of the excitation spectrum of a spinless fermion model with periodic bound-
ary conditions contained two types of topological excitations (separate winding 
numbers of le�- and right-moving fermion �elds) as well as Tomonaga’s sound-
wave modes.
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Knowledge of the energies of the two topological excitations �xed not only 
the speed of sound, which could be independently checked, but also the cor-
relation exponent η, and applying this to the Bethe Ansatz solution of the XXZ 
model in zero �eld (or the equivalent Jordan-Wigner fermion model with a half-
�lled band) for which Luther and Peschel had indirectly found the exact value of 
the exponent η as a function of the couplings, I was able to con�rm that the new 
expressions in terms of winding-number energies were also consistent, correct, 
and quite general.

�is opened up by the possibility of extracting exact correlation exponents 
from Bethe Ansatz solutions of some models exhibiting one-dimension criticality 
by using the energies of their various topological excitations to �t them to what I 
called an e�ective “Luttinger liquid”(Haldane, 1981b) (or perhaps more properly 
a “Tomonaga-Luttinger liquid”) modeled by a Luttinger model. �ese develop-
ments occurred before the later appearance of more powerful (1+1)-dimensional 
conformal �eld theory methods, and “Luttinger liquids” turn out to be systems 
decomposable into Abelian representations of the Virasoro algebra, with the con-
straints of Lorentz invariance removed.

When I applied this new picture to the the full parameter space of the Bethe-
Ansatz solutions of the XXZ spin chain (which required numerical solution of 
the Bethe Ansatz integral equations away from haf-�lling of the fermion bands) 
it became immediately obvious from inspection of the results that the miss-
ing ingredient in Luther and Peschel’s work was the omission of the “Umklapp” 
process by which, at half-�lling of the band (where 4kF is a Bragg vector), so 
scattering processes where the momentum changes by 4kF allow two low-energy 
“le�-moving” electrons (each with momentum near −kF) to scatter into two low-
energy right-moving electron states, each with momentum near kF.

At �rst sight this should be represented by a term Ψ†
R(x)Ψ†

R(x)ΨL(x)ΨL(x), 
but this is ruled out by the Pauli principle, which is presumably why Umklapp 
was not considered in the original work by Luther and Peschel, but the next-
order term (Ψ†

R(x)∂xΨ†
R(x))(ΨL(x)∂xΨL(x)) is allowed, and when “bosonized” 

becomes cos 2θ ≡ cos 2(φR(x) – φL(x)). In the quantum analog of of the Ber-
ezinsky-Kosterlitz-�ouless (BKT) transition, this is a double-vortex unbinding 
transition, which is allowed, but the standard single-vortex unbinding transition
is forbidden by momentum conservation. �e translation of the usual single-
vortex BKT process from classical 2D to quantum (1+1)D would be represented 
by a term cosθ which becomes “relevant” (causing a gap to open) when η > 14. 
�e generalization of this is that a cos mθ term becomes relevant when η > 
14m2, which is perfectly consistent with the double-vortex term cos 2θ becoming 
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relevant (in the absence of the single-vortex term) exactly at the isotropic XXX 
point when η = 1.

�is missing ingredient completed the �eld-theoretic picture of the S = 12
begun by Luther and Peschel. It also removed the the apparent “special” nature of 
the S = 12 model which seemed to come from its mapping to a fermion model. �e 
bosonization now provided a representation in terms of two “chiral” (le�-moving 
and right-moving) topological winding number �elds φL(x) and φR(x), without 
any obvious relation to the value of the spin S of the underlying spin chain.

A planar “XY” spin can be visualized as a “compass needle” that points in a 
2D direction (cos(φ(x)), sin(φ(x)), and if it obeys a periodic boundary condition 
on a circle of circumference L, then φ(x + L) = φ(x) + 2πW where the “winding 
number” W is a topological invariant that cannot change if the �eld φ(x) varies 
smoothly with x. In the classical 2D XY model, φ(x,y) is a smooth function 
except at singular points (x0,y0) which are the centers of vortices. In the quan-
tum (1+1)D model these become space-time points (x0, t0) representing tunnel-
ing events (which have been called “instantons”) at which the winding number 
changes, through a singular process that occurs brie�y at a 1D space point x0 and 
during an instant of time near t0.

It turned out that for a spin-S easy-plane spin chain with zero magnetization 
along the z-axis, the usual “single-vortex” BKT “instanton” process is generically 
present, but is forbidden by an exact quantum interference process if 2S is odd. 
�is highlights a di�erence between the classical statistical mechanics of the 2D 
BKT transition and the (1+1)D quantum version. In the classical 2D model, the 

FIGURE 7. In (1+1)D space-time, the analog of the 2D vortex is an “instanton” tunelling 
process where the topological winding number of the easy-plane spin-chain changes. �is 
process is centered on a “bond” between consecutive sites on which the local Néel order 
breaks down for a short time interval.
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strength of the vortex term in the Boltzmann factor is a real positive fugacity 
factor, but in the quantum (1+1)D model, it is a complex amplitude for tunneling 
between topologically-di�erent con�gurations with di�erent winding number, 
and is real-positive or negative in time-reversal-invariant models. �is means 
that quantum interference between competing instanton processes can occur.

In this case the tunneling process is centered at the midpoint of a “bond” 
between two neighboring spins. Assuming the spin chain is invariant under 
spatial translation by one site, the magnitude of the amplitude for the tunneling 
process must be the same independent of which bond it is centered on. But when 
two such processes on consecutive bonds are compared, the main di�erence is 
that one spin that rotated 180° clockwise now rotates 180° anticlockwise, so the 
two processes di�er by a net rotation of one spin by 360°, with the histories of 
all other spins essentially identical. �e fundamental di�erence between a spin 
where 2S is even and one where 2S is odd is that in the latter case, there is quan-
tum state has a sign change as a result of the rotation. �is means that, providing 
the exchange energy is the same on all bonds, there is destructive interference 
between instanton tunneling events on neighboring bonds is 2S is odd, but con-
structive interference if 2S is even.

�is provides the “topological” explanation of why the instanton process that 
becomes relevant as the anisotropy of the spin-12 XXZ chain changes from easy-
plane to easy axis corresponds to a double vortex of the BKT transition. It only 
drives the instability of the topologically-ordered easy-plane phase because the 
dominant single vortex process is canceled by destructive interference when 2S is 
odd. However, for integer S it is present, and the BKT transition will occur once 
the correlation exponent rise to the limiting value η = 14 when tunneling between 
states with di�erent winding number becomes relevant, topological order breaks 
down, and a gap in the excitation spectrum opens up. At this critical point the 
Néel correlations of (Sx

nSx
n′) and (Sy

nSy
n′) fall o� much slower than than those 

of (Sz
nSz

n′) implying that the transition happens before the isotropic Heisenberg 
point is reached. It is also a transition to a unique (singlet) ground state, while 
the double-vortex process conserves winding-number modulo 2, and leads to a 
two-fold degenerate (doublet) ground state when it becomes relevant.

From these results, it became clear that the progression from easy-plane 
to easy-axis models was quite di�erent in the two cases of integer-S and half-
odd-integer-S antiferromagnets. As λ increases, the chain with 2S odd has a 
direct “double-BKT” transition at λ = 1 from the topologically-ordered gapless 
easy-plane antiferromagnet with λ < 1 to the gapped easy-axis antiferromagnet 
with a doublet broken-symmetry Ising-Néel ground state. In contrast, the chain 
with even 2S has an a standard BKT transition at λ = λc < 1to a singlet gapped 
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spin-liquid state with no broken symmetry, followed by a second Ising-type tran-
sition at λ = λc > 1 to the easy-axis Ising-Néel state.

�ese arguments exposed a fundamental topological di�erence between 
antiferromagetic Heisenberg (isotropic) quantum spin-S chains with 2S even 
and those with 2S odd, which contradicted the then-prevailing belief that the 
value of S entered as a continuous parameter as an expansion in powers of S−1

analogous to a semiclassical expansion in powers of ħ. In this view, the asymp-
totic long-distance behavior of 

!
Sn ⋅
!
S ′n  would behave as (−1)n−n′ |n − n′|−η, where 

η(S−1) was a smooth function of S−1 that vanishes as S−1 → 0.
My apparently-heretical 1981 claim, that there was a fundamental di�er-

ence between one-dimensional quantum antiferromagnets with integer and 
half-odd-integer S, was presumably not well-enough explained, and the original 
paper (Haldane, 1981a) was rejected by a number of journals, and referred to by 
sceptics as a “conjecture,” a description that seems to have stuck! By the time the 
paper was �nally published (Haldane, 1983a), it had been signi�cantly rewritten 
to emphasise the isotropic Heisenberg case, and the original preprint was eventu-
ally apparently lost, as this was years before preprints were stored on the internet. 
Happily, I recently recovered a copy that had been preserved by Jenő Sólyom, 
and placed it in the arXiv repository (Haldane, 1981a) for historical interest. 
Subsequently numerical exact diagonalization studies by Botet and Jullien (Botet 
and Jullien, 1983) found evidence for it, and �nally, neutron scattering studies 
by Bill Buyers (Buyers et al., 1986) on the quasi-one dimensional organic Nickel 
compound NENP provided experimental con�rmation that the ground state of 
the spin-1 antiferromagnet was a singlet with an excitation gap.

�e underlying reason that my 1981 result was so unexpected was that the 
spin-liquid state of the integer spin-1 chain was an early example of “topological 
quantum matter.” �e discovery predated Berry’s 1983 discovery of the Berry 
phase, which in spin systems con�rmed that the spin quantum number S had a 
topological role which relied on the value of 2S being an integer. Initially, from 
the standard Hamiltonian formulation used by condensed-matter physicists, it 
seemed mysterious that there seemed to be two distinct ways to apply quantum 
mechanics to a continuum �eld theory description of quantum antiferromag-
netic spin chains, the “O(3) non-linear sigma model,” one for half-odd-integer 
spins, and the other for integer spins. In 1983, a very useful lead came from a 
discussion I had with Edward Witten, who mentioned that in the Lagragian 
formulation favored by particle physicists, the sigma model could have an addi-
tional “topological term,” which disappeared in the Hamiltonian formulation, 
and had no e�ect in the classical limit. �is term is parameterized by an angle 
θ; and it was easy to use a formulation in terms of the Berry phases of the paths 
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traced out by individual spins to show that this angle was 2πS, taking the value 
0 modulo 2π for integers spins, and π modulo 2π for half-odd-integer spins 
(these are the only two values compatible with time-reversal symmetry). �is 
angle parameter is related to the “axion angle” introduced in high-energy phys-
ics in connection with the “strong-CP-violation” problem, and more recently in 
the electrodynamic description of “strong topological insulators” by Xiao-Liang 
Qi, Taylor Hughes and Shoucheng Zhang (Qi et al., 2008), where the analogous 
“topological angle” takes the value θ = 0 for non-topological TRI insulators, and 
θ = π for the strong 3D TRI topological insulators. �e discovery of the “theta-
term” in the Lagrangian form of the �eld theory of the one-dimensional anti-
ferromagnets seems to mark the time a�er which the Lagrangian formulation 
started to become ubiquitous in theoretical quantum condensed-matter physics, 
and it is now a standard tool that complements Hamiltonian descriptions.

A simple model state that captures the essence of the gapped integer-S 1D 
antiferro-magnet was subsequently discovered by Ian A�eck, Tom Kennedy, 
Hal Tasaki, and Elliot Lieb (A�eck et al., 1987), which is also the exact ground 
state of a modi�ed “toy model” (the “AKLT model), which is particularly reveal-
ing, as it shows up the novel nature of quantum entanglement in the topological 
state. In this picture, a spin-1 object is viewed as a symmetric state of two spin-12
“half-spins,” each of which can form an entangled singlet “valence bond” state

 
Ψ = 1

2
↑↓ − ↓↑( ) (4)

FIGURE 8. �e S = 1 AKLT state treats each spin a a symmetric combination of two S = 12 
“half-spins,” one of whch forms a singlet valence bond with a “half-spin” of the neighbor 
to the right, the other with the neighbor to the le�. An unused spin-12 is le� at each open 
end of the chain, and the “entanglement spectrum” consists of a single doublet.
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by pairing with one of the half-spins of each neighbor. If the magnetic chain has 
free ends (i.e., is “open”), this leaves an unpaired spin-12 at each end of the chain. 
�is model also reveals the essentially “entangled” nature of the state: if the chain 
is cut in two, unpaired spin-12 degrees of freedom appear on either side of the cut, 
and the model state has a very simple characteristic “entanglement spectrum” 
(Li and Haldane, 2008) of a single spin-12 doublet. �e feature that that all states 
in the entanglement spectrum are doublets, and that free ends of a long open 
spin-1 chain carry local spin-12 degrees of freedom is true for all states in the same 
topological class as the AKLT model, including the standard spin-1 Heisenberg 
antiferromagnet that I originally studied. (See Figure 8.)

�e edges of the (integer) spin-S chain have local spin-12 S degrees of freedom, 
but since the elementary gapped bulk excitations are spin-1 magnons which can 
bind to the edge, the edge spins are topologically protected only when S is an odd
integer. �e �nal classi�cation (Chen et al., 2013) is that only the odd-integer-S
state is a “symmetry protected topological state” (SPT state) protected by either 
time-reversal symmetry or spatial inversion, with a generic two-fold degeneracy 
of states in the entanglement spectrum.

Over the years, studies of topological state of the S = 1 Heisenberg antiferro-
magnet have been remarkable fruitful. �e detailed study of its topological stabil-
ity was the starting point that led a uni�ed classi�cation of SPT states in both one 
dimension and higher dimensions by Xiao-Gang Wen and collaborators (Chen 
et al., 2013). In addition, its entanglement spectrum lies at the heart of the “den-
sity-matrix renormalization group” (White, 1992) and “matrix-product state” 
techniques that were in part developed for testing and verifying the so-called 
“Haldane conjecture.” �e features of unexpected topologically-protected edge 
states recur again and again in connection with “topological state of matter,” for 
example in the “Majorana modes” that appear at the edge of topological super-
conducting wires, where the simple “toy model” introduced by Kitaev (Kitaev, 
2001) plays a similar role to the AKLT model, and are now considered to be a 
possible platform for future topological quantum information processing. It is 
surprising how rich the developments stemming from the surprise discovery of 
topological phases of matter around 1980 has been.

Looking back at how this new �eld of topological quantum matter has devel-
oped since the initial discoveries in about 1980, I am struck be how important 
the use of stripped down “toy models” has been in discovering new physics. 
It also used to be thought that one-dimensional models were just “homework 
exercises” to be carried out before tackling the “real” three dimensional systems. 
In fact, partly because the e�ects of quantum �uctuations are more dramatic in 
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low dimensions, we have found many interesting phenomena, in in doing so, a 
whole new way to look at condensed matter, and the exotic “topological states” 
that quantum mechanics make possible.

It has been my privilege to have been able to participate in opening up this 
�eld, to which many others have added amazing discoveries, and which has led 
to dreams of new quantum information technologies. I thank the Royal Swedish 
Academy of Sciences for honoring my co-Laureates and myself, and indeed our 
exciting sub�eld of physics.
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