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We must infer what the future situation would have been without our 
interference, and what change will be wrought in it by our action. 
Fortunately or unfortunately, none of these processes is infallible, or 
indeed ever accurate and complete. Knight (1921: 201–202)

1 Intr oduct ion

Asset pricing theory has long recognized that financial markets compensate in-
vestors who are exposed to some components of uncertainty. This is where mac-
roeconomics comes into play. The economy-wide shocks, the primary concern 
of macroeconomists, by their nature are not diversifiable. Exposures to these 
shocks cannot be averaged out with exposures to other shocks. Thus, returns on 
assets that depend on these macroeconomic shocks reflect “risk” premia and are 
a linchpin connecting macroeconomic uncertainty to financial markets. A risk 
premium reflects both the price of risk and the degree of exposure to risk. I will 
be particularly interested in how the exposures to macroeconomic impulses are 
priced by decentralized security markets.
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José Scheinkman, Martin Schneider, Stephen Stigler, Harald Uhlig, Amir Yaron an 
anonymous referee and especially Jaroslav Borovička, James Heckman, Thomas Sargent 
and Grace Tsiang for helpful comments.
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How do we model the dynamic evolution of the macroeconomy? Follow-
ing the tradition initiated by Slutsky (1927, 1937) and Frisch (1933), I believe 
it is best captured by stochastic processes with restrictions; exogenous shocks 
repeatedly perturb a dynamic equilibrium through the model’s endogenous 
transmission mechanisms. Bachelier (1900), one of the developers of Brown-
ian motion, recognized the value of modeling financial prices as responses to 
shocks.1 It took economists fifty years to discover and appreciate his insights. 
(It was Savage who alerted Samuelson to this important line of research in the 
early 1950s.) Prior to that, scholars such as Yule (1927), Slutsky (1927, 1937) 
and Frisch (1933) had explored how linear models with shocks and propaga-
tion mechanisms provide attractive ways of explaining approximate cyclical 
behavior in macro time series. Similarities in the mathematical underpinnings 
of these two perspectives opened the door to connecting macroeconomics and 
finance.

Using random processes in our models allows economists to capture the 
variability of time series data, but it also poses challenges to model builders. As 
model builders, we must understand the uncertainty from two different perspec-
tives. Consider first that of the econometrician, standing outside an economic 
model, who must assess its congruence with reality, inclusive of its random per-
turbations. An econometrician’s role is to choose among different parameters 
that together describe a family of possible models to best mimic measured real 
world time series and to test the implications of these models. I refer to this as 
outside uncertainty. Second, agents inside our model, be it consumers, entrepre-
neurs, or policy makers, must also confront uncertainty as they make decisions. 
I refer to this as inside uncertainty, as it pertains to the decision-makers within 
the model. What do these agents know? From what information can they learn? 
With how much confidence do they forecast the future? The modeler’s choice 
regarding insiders’ perspectives on an uncertain future can have significant con-
sequences for each model’s equilibrium outcomes.

Stochastic equilibrium models predict risk prices, the market compensa-
tions that investors receive for being exposed to macroeconomic shocks. A chal-
lenge for econometric analyses is to ascertain if their predictions are consistent 
with data. These models reveal asset pricing implications via stochastic discount 
factors. The discount factors are stochastic to allow for exposures to alternative 

1 See Davis and Etheridge (2006) for a translation and commentary and Dimson and 
Mussavian (2000) for an historical discussion of the link between Bachelier’s contribu-
tion and subsequent research on efficient markets.
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macroeconomic random outcomes to be discounted differently. Moreover, the 
compounding of stochastic discount factors shows how market compensations 
change with the investment horizon. Stochastic discount factors thus provide 
a convenient vehicle for depicting the empirical implications of the alternative 
models. I will initially describe the methods and outcomes from an econometri-
cian outside the model.

Stochastic discount factors are defined with respect to a probability distri-
bution relevant to investors inside the model. Lucas (1972) and others imposed 
rational expectations as an equilibrium concept, making the probability distri-
bution relevant to investors inside the model coincide with the probability dis-
tribution implied by the solution to the model. It is an elegant response for how 
to model agents inside the model, but its application to the study of asset pric-
ing models has resulted in empirical puzzles as revealed by formal economet-
ric methods that I will describe. These and other asset pricing anomalies have 
motivated scholars to speculate about investor beliefs and how they respond 
to or cope with uncertainty. In particular, the anomalies lead me and others to 
explore specific alternatives to the rational expectations hypothesis.

In this essay I will consider alternatives motivated in part by a decision the-
ory that allows for distinctions between three alternative sources of uncertainty: 
i) risk conditioned on a model, ii) ambiguity about which is the correct model 
among a family of alternatives, and iii) potential misspecification of a model or 
a family of possible models. These issues are pertinent to outside econometri-
cians, but they also may be relevant to inside investors. I will elaborate on how 
the distinctions between uncertainty components open the door to the inves-
tigation of market compensations with components other than more narrowly 
defined risk prices. Motivated by empirical evidence, I am particularly inter-
ested in uncertainty pricing components that fluctuate over time.

Why is it fruitful to consider model misspecification? In economics and as 
in other disciplines, models are intended to be revealing simplifications, and 
thus deliberately are not exact characterizations of reality; it is therefore spe-
cious to criticize economic models merely for being wrong. The important criti-
cisms are whether our models are wrong in having missed something essential 
to the questions under consideration. Part of a meaningful quantitative analysis 
is to look at models and try to figure out their deficiencies and the ways in which 
they can be improved. A more subtle challenge for statistical methods is to ex-
plore systematically potential modeling errors in order to assess the quality of 
the model predictions. This kind of uncertainty about the adequacy of a model 
or model family is not only relevant for econometricians outside the model but 
potentially also for agents inside the models.
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This essay proceeds as follows. In Section 2, I review the development of 
time series econometric modeling, including the initiation of rational expecta-
tions econometrics. In Section 3, I review my contributions to the economet-
ric study of partially specified models, adapting to the study asset pricing and 
macroeconomic uncertainty. I describe methods and approaches to the study of 
fully specified models based on asset pricing considerations in Section 4. In Sec-
tion 5, I explore the consequences for asset pricing models when investor beliefs 
are not in full accord with an underlying model, which can result in investor be-
havior that resembles extreme risk aversion. In Section 6, I review perspectives 
on model ambiguity which draw on work by decision theorists and statisticians 
to revisit the framework that I sketch in Section 5. I draw some conclusions in 
Section 7.

2  Rational Expect ations Econometrics

Rational expectations econometrics explores structural stochastic models of 
macroeconomic time series with the ambition to be a usable tool for policy 
analysis. It emerged in response to a rich history of modeling and statistical 
advances. Yule (1927) and Slutsky (1927, 1937) provided early characterizations 
of how time series models can generate interesting cyclical behavior by propa-
gating shocks. Yule (1927) showed that a second-order autoregression could 
reproduce intriguing patterns in the time series. He fit this model to sunspot 
data, known to be approximately but not exactly periodic. The model was built 
using independent and identically distributed (iid) shocks as building blocks. 
The model produced a damped periodic response to random impulses. Simi-
larly, Slutsky (1927, 1937) constructed models that were moving-averages of iid 
shocks and showed how such processes could be arbitrarily close to exact peri-
odic sequences.2 He also demonstrated how moving-average type models could 
account for British business cycle data.

Frisch (1933), who shared the first Sveriges Riksbank Prize in Economics 
with Tinbergen, pushed this agenda further by exploring how to capture dy-
namic economic phenomenon through probability models with explicit eco-
nomic underpinnings. Frisch discussed propagation from initial conditions 
and described an important role for random impulses building in part on the 
work of Yule (1927) and Slutsky (1927, 1937). In effect, Frisch (1933) introduced 

2 I cite two versions of Slutsky’s paper. The first one was published in Russian. The second 
one was published in English a decade later with a more comprehensive set of results. 
English translations of the first paper were circulated well in advance of 1937.
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impulse response functions to economics as a device to understand the inter-
temporal impact of shocks on economic variables. Haavelmo (1944) took an 
additional step by providing foundations for the use of statistical methods to 
assess formally the stochastic models. This literature set the foundation for a 
modern time series econometrics that uses economics to interpret evidence in a 
mathematically formal way. It featured important interactions among econom-
ics, mathematics and statistics and placed a premium on formal model build-
ing.3 Haavelmo (1944) confronts uncertainty as an econometrician outside the 
model that is to be estimated and tested.

Investment and other decisions are in part based on people’s views of the 
future. Once economic decision makers are included into formal dynamic eco-
nomic models, their expectations come into play and become an important in-
gredient to the model. This challenge was well appreciated by economists such 
as Pigou, Keynes and Hicks, and their suggestions have had durable impact on 
model building. Thus, the time series econometrics research agenda had to take 
a stand on how people inside the model made forecasts. Alternative approaches 
were suggested including static expectations, adaptive expectations or appeals 
to data on beliefs; but these approaches left open how to proceed when using 
dynamic economic models to assess hypothetical policy interventions.

A productive approach to this modeling challenge has been to add the hy-
pothesis of rational expectations. This hypothesis appeals to long histories of 
data to motivate the modeling expectations. The Law of Large Numbers gives an 
approximation whereby parameters that are invariant over time are revealed by 
data, and this revelation gives a model builder a way to formalize the expecta-
tions of economic investors inside our models.4 This approach to completing the 
specification of a stochastic equilibrium model was initiated within macroeco-

3 Frisch, in particular, nurtured this ambitious research agenda by his central role in the 
foundational years of the Econometric Society. His ambition is reflected in the 1933 mis-
sion statement he wrote for the journal Econometrica: “. . . Experience has shown that 
each of these three viewpoints, that of statistics, economic theory, and mathematics, is a 
necessary, but not by itself a sufficient, condition for a real understanding of the quantita-
tive relations in modern economic life. It is the unification of all three that is powerful. 
And it is this unification that constitutes econometrics.” Frisch (1933b).
4 More than three hundred years ago, Jacob Bernoulli proved a result that implied a Law 
of Large Numbers. He was motivated in part by social problems for which probabilities 
had to be estimated empirically, in contrast to typical gambling problems. Bernoulli’s 
result initiated an enduring discussion of both the relevance of his simple model speci-
fication and of the approximation he established. See Stigler (2014) for an interesting 
retrospective on Bernoulli’s contribution.
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nomics by Muth (1961) and Lucas (1972). Following Lucas (1972) in particular, 
rational expectations became an integral part of an equilibrium for a stochastic 
economic model.

The aim of structural econometrics is to provide a framework for policy 
analysis and the study of counterfactuals. This vision is described in Marschak 
(1953) and articulated formally in the work of Hurwicz (1962). While there are 
a multitude of interesting implications of the rational expectations hypothesis, 
perhaps the most important one is its role in policy analysis. It gives a way to 
explore policy experiments or hypothetical changes that are not predicated on 
systematically fooling people. See Sargent and Wallace (1975) and Lucas (1976) 
for a discussion.5

From an econometric standpoint, rational expectations introduced impor-
tant cross-equation restrictions. These recognize that parameters governing 
the dynamic evolution of exogenous impulses to the model must also be pres-
ent in decision rules and equilibrium relations. These restrictions reflect how 
decision-makers within the model are forward-looking. For instance, an invest-
ment choice today depends on the beliefs about how profitable such investments 
will be in the future. Investors forecast the future, and the rational expectations 
hypothesis predicts how they do this. The resulting cross-equation restrictions 
add a new dimension to econometric analysis; but these restrictions are built 
on the premise that investors have figured much out about how the future will 
evolve. See Sargent (1973), Wallis (1980) and my first published paper, Hansen 
and Sargent (1980), for characterizations of these restrictions.6 To implement 
this approach to rational expectations econometrics, a researcher is compelled 
to specify correctly the information sets of economic actors.7 When building 
actual stochastic models, however, it is often not clear what information should 
be presumed on the part of economic agents, how they should use it, and how 
much confidence they have in that use.

The introduction of random shocks as impulses to a dynamic economic 
model in conjunction with the assumption of rational expectations is an exam-
ple of uncertainty inside a model. Under a rational expectations equilibrium, an 

5 To be clear, rational expectations offers an approach for comparing distinct stochastic 
equilibria but not the transitions from one to another. For an interesting extension that 
allows for clustering of observations near alternative self-confirming equilibria in con-
junction with escapes from such clusters see Sargent (1999).
6 While this was my first publication of a full length paper, this was not my first publica-
tion. My first was a note published in Economic Letters.
7 See Sims (2012) for a discussion of the successes and limitations of implementing the 
Haavelmo (1944) agenda to the study of monetary policy under rational expectations.
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investor inside the model knows the model-implied stochastic evolution for the 
state variables relevant for decision making and hence the likely consequences 
of the impulses. An econometrician also confronts uncertainty outside a model 
because of his or her lack of knowledge of parameters or maybe even a lack of 
confidence with the full model specification. There is an asymmetry between 
the inside and the outside perspectives found in rational expectations econo-
metrics that I will turn to later. But first, I will discuss an alternative approach to 
imposing rational expectations in econometric analyses.

3  Robust Econometrics under Rational Expect ations

My econometrics paper, Hansen (1982b), builds on a long tradition in econo-
metrics of “doing something without having to do everything.” This entails the 
study of partially specified models—that is, models in which only a subset of 
economic relations are formally delineated. I added to this literature by ana-
lyzing such estimation problems in greater generality, giving researchers more 
flexibility in modeling the underlying time series while incorporating some ex-
plicit economic structure. I studied formally a family of Generalized Method of 
Moments (GMM) estimators, and I adapted these methods to applications that 
study linkages between financial markets and the macroeconomy.8 By allow-
ing for partial specification, these methods gain a form of robustness. They are 
immune to mistakes in how one might fill out the complete specification of the 
underlying economic model.

The approach is best thought of as providing initial steps in building a time 
series econometric model without specifying the full econometric model. Con-
sider a research program that studies the linkages between the macroeconomy 
and financial markets. One possibility is to construct a fully specified model of 

8 My exposure to using GMM estimators as a vehicle to represent a broad family of esti-
mators originally came from Christopher Sims’ lectures. As a graduate student I became 
interested in central limit approximations that allow for econometric error terms to pos-
sess general types of temporal dependence by using central limit approximations of the 
type demonstrated by Gordin (1969). I subsequently established formally large sample 
properties for GMM estimators in such circumstances. Interestingly, Econometrica chose 
not to publish many of the formal proofs for results in my paper. Instead they were pub-
lished thirty years later by the Journal of Econometrics, see Hansen (2012). Included in 
my original submission and in the published proofs is a Uniform Law of Large Numbers 
for stationary ergodic processes. See Hansen (2001) and Ghysels and Hall (2002) for 
further elaborations and discussion about the connection between GMM and related 
statistics literatures. See Arellano (2003) for a discussion of applications to panel data.
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the macroeconomy including the linkages with financial markets that are pre-
sumed to exist. This is a lot to ask in early stages of model development. Of 
course, an eventual aim is to produce a full model of stochastic equilibrium.

The econometric tools that I developed are well suited to study a rich fam-
ily of asset pricing models, among other things. Previously, Ross (1978) and 
Harrison and Kreps (1979) produced mathematical characterizations of asset 
pricing in frictionless asset pricing markets implied by the absence of arbitrage. 
Their work provides a general way to capture how financial markets value risky 
payoffs. My own research, and that with collaborators, built on this conceptual 
approach, but with an important reframing. Our explicit consideration of sto-
chastic discounting, left implicit in the Ross (1978) and Harrison and Kreps 
(1979) framework, opened the door to new ways to conduct empirical studies 
of asset pricing models using GMM and related econometric methods. I now 
describe these methods.

3.1 A  GMM Approach to Empirical Asset Pricing

A productive starting point in empirical asset pricing is

	
E

St+
St

⎛
⎝⎜

⎞
⎠⎟
Yt+⎪Ft

⎡

⎣
⎢

⎤

⎦
⎥ =Qt 	 (1)

where S > 0 is a stochastic discount factor (SDF) process. In formula (1), Yt+l is a 
vector of payoffs on assets at time t + l, and Qt is a vector of corresponding asset 
prices. The event collection (sigma algebra), Ft, captures information available 
to an investor at date t. The discount factor process is stochastic in order to 
adjust market values for risk. Each realized state is discounted differently and 
this differential discounting reflects investor compensation for risk exposure. 
Rational expectations is imposed by presuming that the conditional expecta-
tion operator is consistent with the probability law that governs the actual data 
generation. With this approach a researcher does not specify formally that prob-
ability law and instead “lets the data speak.”

Relations of type (1) are premised on investment decisions made in optimal 
ways and are fundamental ingredients in stochastic economic models. The spec-
ification of a SDF process encapsulates some economics. It is constructed from 
the intertemporal marginal rates of substitution of marginal investors. Investors 
consider the choice of consuming today or investing to support opportunities to 
consume in the future. There are a variety of investment opportunities with dif-
ferential exposure to risk. Investors’ risk aversion enters the SDF and influences 
the nature of the investment that is undertaken. While I have used the language 
of financial markets, this same formulation applies to investments in physical 
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and human capital. In a model of a stochastic equilibrium, this type of relation 
holds when evaluated at equilibrium outcomes. Relation (1) by itself is typi-
cally not sufficient to determine fully a stochastic equilibrium, so focusing on 
this relation alone leads us to a partially specified model. Additional modeling 
ingredients are required to complete the specification. The presumption is that 
whatever those details might be, the observed time series come from a stochas-
tic equilibrium that is consistent with an equation of the form (1).

Implications of relation (1), including the role of SDFs and the impact of 
conditioning information used by investors, were explored systematically in 
Hansen and Richard (1987). But the origins of this empirically tractable for-
mulation traces back to Rubinstein (1976), Lucas (1978) and Grossman and 
Shiller (1981), and the conceptual underpinnings to Ross (1978) and Harrison 
and Kreps (1979).9 To implement formula (1) as it stands, we need to specify the 
information set of economic agents correctly. The Law of Iterated Expectations 
allows us to understate the information available to economic agents.10 For in-
stance let Ft ⊂ Ft  denote a smaller information set used by an external analyst. 
By averaging over the finer information set Ft conditioned on the coarser infor-
mation set Ft , I obtain

	
E

St+
St

⎛
⎝⎜

⎞
⎠⎟
Yt+( )′ − Qt( )′⎪F t

⎡

⎣
⎢

⎤

⎦
⎥ = 0. 	 (2)

I now slip in conditioning information through the “back door” by constructing 
a conformable matrix Zt with entries in the reduced information set (that are 
F t  measurable). Then 

	
E

St+
St

⎛
⎝⎜

⎞
⎠⎟

(Yt+ ′) Zt −(Qt ′) Zt⎪Ft
⎡

⎣
⎢

⎤

⎦
⎥ = 0.

	

9 The concept of a SDF was first introduced in Hansen and Richard (1987). Stochastic 
discount factors are closely connected to the “risk-neutral” probabilities used in valu-
ing derivative claims. This connection is evident by dividing the one-period SDF by its 
conditional mean and using the resulting random variable to define a new one-period 
conditional probability distribution, the risk neutral distribution.
10 In his study of interest rates, Shiller (1972) in his PhD dissertation suggested omitted 
information as a source of an “error term” for an econometrician. In Hansen and Sargent 
(1980), we built on this insight by contrasting implications for a “Shiller error-term” as 
a disturbance term to processes that are unobserved to an econometrician and enter 
structural relations. In Hansen and Sargent (1991) we show how to allow for omitted 
information in linear or log-linear time series models using quasi-likelihood methods.
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Under an asset pricing interpretation, (Yt+l)′Zt is a synthetic payoff vector 
with a corresponding price vector (Qt)′Zt. Finally, we may form the uncondi-
tional expectation by averaging over the coarser conditioning information set 
Ft :

	
E

St+
St

⎛
⎝⎜

⎞
⎠⎟
Yt+( )′ − Qt( )′ |Ft

⎡

⎣
⎢

⎤

⎦
⎥ = 0. 	 (3)

This becomes an estimation problem once we parameterize the SDF in terms 
of observables and unknown parameters to be estimated.

Hansen and Singleton (1982) is an initial example of this approach.11 In 
that work we consider the case in which the SDF process can be constructed 
from observables along with some unknown parameters. Economics comes 
into play in justifying the construction of the SDF process and sometimes in 
the construction of returns to investment. From an econometric perspective, 
time series versions of Laws of Large Numbers and Central Limit Theorems give 
us approximate ways to estimate parameters and test restrictions as in Hansen 
(1982b).

In Hansen (1982b), I also studied statistical efficiency for a class of GMM 
estimators given a particular choice of Z in a manner that extends an approach 
due to Sargan (1958, 1959).12 When (3) has more equations than unknown pa-
rameters, multiple GMM estimators are the outcome of using (at least implic-
itly) alternative linear combinations of these equations equal to the number of 
parameters. Since there are many possible ways to embark on this construction, 
there is a family of GMM estimators. This family of estimators has an attainable 
efficiency bound derived and reported in Hansen (1982b).13 When the number 

11 An earlier application of GMM inference is found in my work Hansen and Hodrick 
(1980). In that paper we studied the empirical relationship between the logarithm of a 
future spot exchange and the logarithm of the current forward rate and other possible 
predictors. We applied ordinary least squares in our work, but with corrected standard 
errors. Others were tempted to (and in fact did) apply generalized least squares (GLS) to 
“correct for” serial correlation, but applied in this setting GLS is statistically inconsistent. 
The counterpart to the moment conditions studied here are the least squares orthogo-
nality conditions. The contract interval played the role of l in this least squares analysis 
and was typically larger than one. In subsequent work, Hansen and Hodrick (1983), we 
used a SDF formulation to motivate further empirical characterizations, which led us 
to confront over-identification. See also Bilson (1981) and Fama (1984) who featured a 
cross-currency analysis.
12 See Arellano (2002) for a nice discussion relating GMM estimation to the earlier work 
of Sargan.
13 See Hansen (2007b) for a pedagogical discussion of GMM estimation including discus-
sions of large sample statistical efficiency and tests.
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of equations exceeds the number of free parameters, there is also a direct way to 
test equations not used formally in estimation. While nesting estimators into a 
general GMM framework has great pedagogical value, I was particularly inter-
ested in applying a GMM approach to problems requiring new estimators as in 
many of the applications to financial economics and elsewhere.14

Notice that the model, as written down in equation (3), is only partially 
specified. Typically we cannot invert this relation, or even its conditional coun-
terpart, to deduce a full time series evolution for economic aggregates and fi-
nancial variables.15 Other relations would have to be included in order to obtain 
a full solution to the problem.

3.2  Further Econometric Challenges

I now digress temporarily and discuss some econometric extensions that I and 
others contributed to.

3.2.1  Semiparametric Efficiency

Since the model is only partially specified, the estimation challenge leads di-
rectly to what is formally called a semiparametric problem. Implicitly the re-
mainder of the model can be posed in a nonparametric manner. This gives 
rise to a problem with a finite-dimensional parameter vector of interest and an 
infinite-dimensional “nuisance” parameter vector representing the remainder 
of the model. This opens the door to the study of semiparametric efficiency of 
a large class of estimators as will be evident from the discussion that follows. In 
typical GMM problems, the actual introduction of the nuisance parameters can 
be sidestepped.

Relation (2) conditions on the information set of economic agents. We have 
great flexibility in choosing the matrix process Z. The entries of Zt should be 
in the Ft

  information set, but this still leaves many options when building a 
Z process. This flexibility gives rise to an infinite class of estimators. In Han-
sen (1982b), I studied statistical efficiency given a particular choice of Z. This 

14 Other econometricians have subsequently found value in unifying the treatment of 
GMM estimators into a broader type of extremum estimators. This, however, misses 
some of the special features of statistical efficiency within a GMM framework and does 
not address the issue of how to construct meaningful estimators from economic models.
15 For those reluctant to work with partially specified models, Lucas (1978) showed how 
to close a special case of this model by considering an endowment economy. But from 
an empirical standpoint, it is often not necessary to take the endowment nature of the 
economy literally. The consumption from the endowment economy may be conceived of 
as the equilibrium outcome of a model with production and preserves the same pricing 
relations.
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approach, however, understates the class of possible GMM estimators in a po-
tentially important way. Hansen (1985) shows how to construct an efficiency 
bound for the much larger (infinite dimensional) class of GMM estimators. This 
efficiency bound is a greatest lower bound on the asymptotic efficiency of the 
implied GMM estimators. Not surprisingly, it is more challenging to attain this 
bound in practice. For some related but special (linear) time series problems, 
Hansen and Singleton (1996) and West et al. (2009) discuss implementation 
strategies.

There is a more extensive literature exploring these and closely related 
questions in an iid (independent and identically distributed) data setting, in-
cluding Chamberlain (1987), who looks at an even larger set of estimators. By 
connecting to an extensive statistics literature on semiparametric efficiency, he 
shows that this larger set does not improve the statistical efficiency relative to 
the GMM efficiency bound. Robinson (1987), Newey (1990), and Newey (1993) 
suggest ways to construct estimators that attain this efficiency bound for some 
important special cases.16 Finally, given the rich array of moment restrictions, 
there are opportunities for more flexible parameterizations of, say, a SDF pro-
cess. Suppose the conditional moment restrictions contain a finite-dimensional 
parameter vector of interest along with an infinite-dimensional (nonparamet-
ric) component. Chamberlain (1992) constructs a corresponding efficiency 
bound and Ai and Chen (2003) extend this analysis and estimation for such 
problems. While these richer efficiency results have not been shown in the time 
series environment I consider, I suspect that they can indeed be extended.

3.2.2 M odel Misspecification

The approaches to GMM estimation that I have described so far presume a given 
parameterization of a SDF process. For instance, the analysis of GMM efficiency 
in Hansen (1982b) and Hansen (1985) and related literature presumes that the 
model is correctly specified for one value of the unknown (to the econometri-
cian) parameter. Alternatively, we may seek to find the best choice of a param-
eter value even if the pricing restrictions are only approximatively correct. In 
our paper, Hansen and Jagannathan (1997), we suggest a modification of GMM 
estimation in which appropriately scaled pricing errors are minimized. We pro-
pose this as a way to make model comparisons in economically meaningful 
ways. Recently, Gosh et al. (2012) adopt an alternative formulation of model 

16 Relatedly, Zhang and Gijbels (2003), Kitamura et al. (2004) and Antoine et al. (2007) 
studied methods based on restricting nonparametric estimates of conditional density 
functions to attain Chamberlain (1987)’s efficiency bound in an estimation environment 
with independent and identically distributed data generation.
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misspecification extending the approach of Stutzer (1995) described later. This 
remains an interesting and important line of investigation that parallels the dis-
cussion of model misspecification in other areas of statistics and econometrics. 
I will return to this topic later in this essay.

3.2.3 N onparametric Characterization

A complementary approach to building and testing new parametric models is 
to treat the SDF process as unobserved by the econometrician. It is still possible 
to deduce empirical characterizations of such processes implied by asset market 
data. This analysis provides insights into modeling challenges by showing what 
properties a valid SDF process must possess.

It turns out that there are potentially many valid stochastic discount factors 
over a payoff horizon l:

	
s ≡ St+

St 	

that will satisfy either (2) or the unconditional counterpart (3). For simplicity, 
focus on (3).17 With this in mind, let

	

′y = Yt+( )′ Zt

′q = Qt( )′ Zt 	

where for notational simplicity, I omit the time subscripts on the left-hand side 
of this equation. In what follows I will assume some form of a Law of Large 
Numbers so that we can estimate such entities. See Hansen and Richard (1987) 
for a discussion of such issues. Rewriting (3) with this simpler notation:

	 E[sy′ – q′] = 0.	 (4)

This equation typically implies many solutions for a positive s > 0. In our pre-
vious discussion of parametric models, we excluded many solutions by adopting 
a parametric representation in terms of observables and an unknown parameter 
vector. In practice this often led to a finding that there were no solutions, that 
is no values of s solving (4), within the parametric family assumed for s. Using 
Hansen (1982b), this finding was formalized as a test of the pricing restrictions. 
The finding alone left open the question: rejecting the parametric restrictions 

17 For conditional counterparts to some of the results I summarize see Gallant et al. 
(1990) and Cochrane and Hansen (1992).
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for what alternative? Thus a complementary approach is to characterize proper-
ties of the family of s’s that do satisfy (4). These solutions might well violate the 
parametric restriction.

The interesting challenge is how to characterize the family of SDFs that solve 
(4) in useful ways. Here I follow a general approach that is essentially the same 
as that in Almeida and Garcia (2013). I choose this approach both because of its 
flexibilty and because it includes many interesting special cases used in empiri-
cal analysis. Consider a family of convex functions ϕ defined on the positive real 
numbers:18

	
φ(r)= 1

θ(1+θ)
(r)1+θ −1⎡⎣ ⎤⎦ 	 (5)

for alternative choices of the parameter θ. The specification θ = 1 is commonly 
used in empirical practice, in which case ϕ is quadratic. We shall look for lower 
bounds on the

	
E φ s

Es
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥ 	

by solving the convex optimization problem:19

	
λ = inf

s>0
E φ s

Es
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 subject to E s ′y − ′q[ ]= 0. 	 (6)

By design we know that

	
E φ s

Es
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
≥ λ.

	

Notice that E φ s

Es
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 hence λ are nonnegative by Jensen’s Inequality be-

cause ϕ is convex and ϕ (1) = 0. When θ = 1,

18 This functional form is familiar from economists’ use of power utility (in which case 
we use –ϕ to obtain a concave function), from statisticians’ use of F-divergence measures 
between two probability densities, the Box-Cox transformation, and the applications in 
the work of Cressie and Read (1984).
19 Notice that the expectation is also an affine transformation of the moment generating 
function for log s.
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2E φ s

Es
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥ 	

is the ratio of the standard deviation of s to its mean and 2λ  is the greatest 
lower bound on this ratio.

From the work of Ross (1978) and Harrison and Kreps (1979), arbitrage 
considerations imply the economically interesting restriction s > 0 with prob-
ability one. To guarantee a solution to optimization problem (6), however, it is 
sometimes convenient to include s’s that are zero with positive probability. Since 
the aim is to produce bounds, this augmentation can be justified for mathemati-
cal and computational convenience. Although this problem optimizes over an 
infinite-dimensional family of random variables s, the dual problem that opti-
mizes over the Lagrange multipliers associated with the pricing constraint (4) is 
often quite tractable. See Hansen et al. (1995) for further discussion.

Inputs into this calculation are contained in the pair (y, q) and a hypothetical 
mean Es. If we have time series data on the price of a unit payoff at date t + l, 
Es can be inferred by averaging the date t prices over time. If not, by changing 
Es we can trace out a frontier of solutions. An initial example of this is found in 
Hansen and Jagannathan (1991) where we constructed mean-standard devia-
tion tradeoffs for SDFs by setting θ = 1.20,21

While a quadratic specification of ϕ (θ = 1) has been the most common one 
used in empirical practice, other approaches have been suggested. For instance, 
Snow (1991) considers larger moments by setting θ to integer values greater 
than one. Alternatively, setting θ = 0 yields

	
E φ s

Es
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
=
E s log s − logEs( )⎡⎣ ⎤⎦

Es
,

	

20 This literature was initiated by a discussion in Shiller (1982) and my comment on that 
discussion in Hansen (1982a). Shiller argued why a volatility bound on the SDF is of 
interest, and he constructed an initial bound. In my comment, I showed how to sharpen 
the volatility bound, but without exploiting that s > 0. Neither Shiller nor I explored 
mean-standard deviation tradeoffs that are central in Hansen and Jagannathan (1991). In 
effect, I constructed one point on the frontier characterized in Hansen and Jagannathan 
(1991).
21 When θ is one, the function φ continues to be well defined and convex for negative 
real numbers. As noted in Hansen and Jagannathan (1991), if the negative choices of s 
are allowed in the optimization problem (which weakens the bound), there are quasi-
analytical formulas for the minimization problems with simple links to Sharpe ratios 
commonly used in empirical finance.
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which Stutzer (1995) featured this in his analysis. When θ = –1,

	
E φ s

Es
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
= −E log s + logEs

	

and use of this specification of ϕ gives rise to a bound that has been studied 
in several papers including Bansal and Lehmann (1997), Alvarez and Jermann 
(2005), Backus et al. (2011), and Backus et al. (2014). These varying convex 
functions give alternative ways to characterize properties of SDFs that work 
through bounding their stochastic behaviour.22 He and Modest (1995) and Lu-
ttmer (1996) further extended this work by allowing for the pricing equalities to 
be replaced by pricing inequalities. These inequalities emerge when transaction 
costs render purchasing and selling prices distinct.23

3.3  The Changing Price of Uncertainty

Empirical puzzles are only well defined within the context of a model. Hansen 
and Singleton (1982, 1983) and others documented empirical shortcomings of 
macroeconomic models with power utility versions of investor preferences. The 
one-period SDF of such a representative consumer is:

	

St+1

St
= exp(−δ )

Ct+1

Ct

⎛
⎝⎜

⎞
⎠⎟

−ρ

	 (7)

where Ct is consumption, δ is the subjective rate of discount and 
1

ρ  is the in-
tertemporal elasticity of substitution. Hansen and Singleton and others were the 
bearers of bad news: the model didn’t match the data even after taking account 
of statistical inferential challenges.24

22 The continuous-time limit for the conditional counterpart results in one-half times the 
local variance for all choices of ϕ for Brownian information structures.
23 There has been some work on formal inferential methods associated with these meth-
ods. For instance, see Burnside (1994), Hansen et al. (1995), Peñaranda and Sentana 
(2011) and Chernozhukov et al. (2013).
24 Many scholars make reference to the “equity premium puzzle.” Singleton and I showed 
how to provide statistically rigorous characterizations of this and other empirical anoma-
lies. The puzzling implications coming from this literature are broader than the expected 
return differential between an aggregate stock portfolio and bonds and extend to dif-
ferential returns across a wide variety of securities. See, for instance, Fama and French 
(1992) for empirical evidence on expected return differences, and see Cochrane (2008) 
and the discussion by Hansen (2008) for an exchange about the equity premium and 
related puzzles.
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This empirical work nurtured a rich literature exploring alternative prefer-
ences and markets with frictions. Microeconomic evidence was brought to bear 
that targeted financial market participants when constructing the SDFs. These 
considerations and the resulting modeling extensions led naturally to alterna-
tive specifications on SDFs and suggestions for how they might be measured.

The nonparametric methods leading to bounds also added clarity to the em-
pirical evidence. SDFs encode compensations for exposure to uncertainty be-
cause they discount alternative stochastic cash flows according to their sensitiv-
ity to underlying macroeconomic shocks. Thus, empirical evidence about SDFs 
sheds light on the “risk prices” that investors need as compensations for being 
exposed to aggregate risk. Using these nonparametric methods, the empirical 
literature has found that the risk price channel is a fertile source for explaining 
observed variations in securities prices and asset returns. SDFs are highly vari-
able (Hansen and Jagannathan (1991)). The unconditional variability in SDFs 
could come from two sources: on-average conditional variability or variation 
in conditional means. As argued by Cochrane and Hansen (1992), it is really 
the former. Conditional variability in SDFs implies that market-based compen-
sations for exposure to uncertainty are varying over time in important ways. 
Sometimes this observation about time variation gets bundled into the observa-
tion about time-varying risk premia. Risk premia, however, depend both on the 
compensation for being exposed to risk (the price of risk) and on how big that 
exposure is to risk (the quantity of risk). Price variability, exposure variability 
or a combination of the two could be the source of fluctuations in risk premia. 
Deducing the probabilistic structure of SDFs from market data thus enables us 
to isolate the price effect. In summary, this empirical and theoretical literature 
gave compelling reasons to explore sources of risk price variation not previously 
captured, and provided empirical direction to efforts to improve investor prefer-
ences and market structures within these models.

Campbell and Cochrane (1999) provided an influential specification of in-
vestor preferences motivated in part by this empirical evidence. Consistent with 
the view that time variation in uncertainty prices is vital for understanding fi-
nancial market returns, they constructed a model in which SDFs are larger in 
magnitude in bad economic times than good. This paper is prominent in the 
asset pricing literature precisely because it links the time series behavior of risk 
prices to the behavior of the macroeconomy (specifically aggregate consump-
tion), and it suggests one preference-based mechanism for achieving this varia-
tion. Under the structural interpretation provided by the model, the implied 
risk aversion is very large in bad economic times and modest in good times as 
measured by the history of consumption growth. This work successfully avoided 
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the need for large risk aversion in all states of the world, but it did not avoid the 
need for large risk aversion in some states. The statistician in me is intrigued by 
the possibility that observed incidents of large risk aversion might be proxying 
for investor doubts regarding the correctness of models. I will have more to say 
about that later.

4 Ec onomic Shocks and Pricing Implic ations

While the empirical methods in asset pricing that I described do not require that 
an econometrician identify the fundamental macroeconomic shocks pertinent 
to investors, this shortcut limits the range of questions that can be addressed. 
Without accounting for shocks, we can make only an incomplete assessment of 
the consequences for valuation of macroeconomic uncertainty. To understand 
fully the pricing channel, we need to know how the  SDF process itself depends 
on fundamental shocks. This dependence determines the equilibrium compen-
sations to investors that are exposed to shocks. We may think of this as valuation 
accounting at the juncture between the Frisch (1933) vision of using shock and 
impulses in stochastic equilibrium models and the Bachelier (1900) vision of 
asset values that respond to the normal increments of a Brownian motion pro-
cess. Why? Because the asset holders exposed to the random impulses affecting 
the macroeconomy require compensation, and the equilibrating forces affecting 
borrowers and lenders interacting in financial markets determine those com-
pensatory premia.

In what follows, I illustrate two advantages to a more complete specification 
of the information available to investors that are reflected in my work.

4.1  Pricing Shock Exposure over Alternative Horizons

First, I explore more fully how a SDF encodes risk compensation over alterna-
tive investment horizons. I suggest a way to answer this question by describ-
ing valuation counterparts to the impulse characterizations advocated by Frisch 
(1933) and used extensively in quantitative macroeconomics since Sims (1980) 
proposed a multivariate and empirical counterpart for these characterizations. 
Recall that an impulse response function shows how alternative shocks tomor-
row influence future values of macroeconomic variables. These shocks also rep-
resent alternative exposures to macroeconomic risk. The market-based com-
pensations for these exposures may differ depending on the horizon over which 
a cash flow is realized. Many fully specified macroeconomic models proliferate 
shocks, including random changes in volatility, as a device for matching time 
series. While the additional shocks play a central role in fitting time series, even-
tually we must seek better answers to what lies within the black box of candidate 
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impulses. Understanding their role within the models is central to opening this 
black box in search of the answers. Empirical macroeconomists’ challenges for 
identifying shocks for the macroeconomy also have important consequences for 
financial markets and the role they play in the transmission of these shocks. Not 
all types of candidate shocks are important for valuation.

I now discuss how we may distinguish which shock exposures command the 
largest market compensation and the impact of these exposures over alternative 
payoff horizons. I decompose the risk premia into risk prices and risk exposures 
using sensitivity analyses on underlying asset returns. To be specific, let X be an 
underlying Markov process and W a vector of shocks that are random impulses 
to the economic model. The state vector Xt depends on current and past shocks. 
I take as given a solved stochastic equilibrium model and reveal its implications 
for valuation. Suppose that there is an implied stochastic factor process S that 
evolves as:

	 log St+1 – log St = ψs (Xt, Wt+1).	 (8)

Typically economic models imply that this process will tend to decay over 
time because of the role that S plays as a discount factor. For instance, for the 

yield on a long-term discount bond to be positive,

	  lim
t→∞

1

t
logE

St
So

Xo = x
⎡

⎣
⎢

⎤

⎦
⎥ < 0.

Specific models provide more structure to the function ψs relating the sto-
chastic decay rate of S to the current state and next period shock. In this sense, 
(8) is a reduced form-relation. Similarly, consider a one-period, positive cash-
flow G that satisfies:

	 log Gt+1 – log Gt = ψg (Xt, Wt+1).	 (9)

The process G could be aggregate consumption, or it could be a measure 
of aggregate corporate earnings or some other process. The logarithm of the 
expected one-period return of a security with this payoff is:

	
υt = logE

Gt+1

Gt

⎪Ft

⎡

⎣
⎢

⎤

⎦
⎥ − logE

St+1Gt+1

StGt

⎪Ft

⎡

⎣
⎢

⎤

⎦
⎥. 	 (10)

So-called risk return tradeoffs emerge as we change the exposure of the cash 
flow to different components of the shock vector Wt+1.

Since cash flow growth Gt+1

Gt

 depends on the components of Wt+1 as a 

source of risk, exposure is altered by changing how the cash flow depends on 
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the underlying shocks. When I refer to risk prices, formally I mean the sen-
sitivity of the logarithm of the expected return given on the left-hand side of 
(10) to change in cash-flow risk. I compute risk prices from measuring how υt 
changes as we alter the cash flow, and compute risk exposures from examining 
the corresponding changes in the logarithm of the expected cash-flow growth: 

logE
Gt+1

Gt

⎪Ft

⎡

⎣
⎢

⎤

⎦
⎥  (the first-term on the right-hand side of (10)).

These calculations are made operational by formally introducing changes in 
the cash-flows and computing their consequences for expected returns. When 
the changes are scaled appropriately, the outcomes of both the price and expo-
sure calculations are elasticities familiar from price theory. To operationalize the 
term changes, I must impose some additional structure that allows a researcher 
to compute a derivative of some type. Thus I must be formal about changes 
in Gt+1

Gt

 as a function of Wt+1. One way to achieve this formality is to take a 

continuous-time limit when the underlying information structure is that im-
plied by an underlying Brownian motion as in the models of financial markets 
as originally envisioned by Bachelier (1900). This reproduces a common notion 
of a risk price used in financial economics. Another possibility is to introduce a 
perturbation parameter that alters locally the shock exposure, but maintains the 
discrete-time formulation.

These one-period or local measures have multi-period counterparts ob-
tained by modeling the impact of small changes in the components of Wt+1 on 

cash flows in future time periods, say 
Gt+τ

Gt

,  for τ ≥ 1. Proceeding in this way, we 

obtain a valuation counterpart to impulse response functions featured by Frisch 
(1933) and by much of the quantitative macroeconomics literature. They inform 
us which exposures require the largest compensations and how these compen-
sations change with the investment horizon. I have elaborated on this topic in 
my Fisher-Schultz Lecture paper (Hansen (2011)), and I will defer to that and 
related papers for more specificity and justification.25 My economic interpreta-
tion of these calculations presumes a full specification of investor information as 
is commonly the case when analyzing impulse response functions.

4.2 A  Recursive Utility Model of Investor Preferences

Next I consider investor preferences that are particularly sensitive to the as-
sumed available information. These preferences are constructed recursively 

25 See Hansen et al. (2008), Hansen and Scheinkman (2009), Borovička et al. (2011), 
Hansen and Scheinkman (2012) and Borovička and Hansen (2014).
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using continuation values for prospective consumption processes, and they are  
featured prominently in the macro-asset pricing literature. With these prefer-
ences the investor cares about intertemporal composition of risk as in Kreps and 
Porteus (1978) with these preferences. As a consequence, general revisions of 
the recursive utility model make investor preferences potentially sensitive to the 
details of the information available in the future. As I will explain, this feature 
of investor preferences makes it harder to implement a “do something without 
doing everything” approach to econometric estimation and testing.

The more general recursive utility specification nests the power utility model 
commonly used in macroeconomics as a special case. Interest in a more general 
specification was motivated in part by some of the statistical evidence that I 
described previously. Stochastic equilibrium models appealing to recursive util-
ity featured in the asset pricing literature were initially advocated by Epstein 
and Zin (1989) and Weil (1990). They provide researchers with a parameter to 
alter risk preferences in addition to the usual power utility parameter known 
to determine the intertemporal elasticity of substitution. The one-period SDF 
measured using the intertemporal marginal rate of substitution is:

	

St+1

St
= exp(−δ )

Ct+1

Ct

⎛
⎝⎜

⎞
⎠⎟

−ρ
Vt+1

Rt (Vt+1)

⎡

⎣
⎢

⎤

⎦
⎥

ρ−γ

	 (11)

where Ct is equilibrium consumption, δ is the subjective rate of discount, 1

ρ
 is 

the elasticity of intertemporal substitution familiar from power utility models, 
Vt is the forward-looking continuation value of the prospective consumption 
process, and Rt(Vt+1) is the risk adjusted continuation value:

	
Rt (Vt+1)= E Vt+1( )1−γ⎪Ft

⎡
⎣

⎤
⎦( )

1

1−γ .
	

The parameter γ governs the magnitude of the risk adjustment. The pres-
ence of the forward-looking continuation values in the stochastic discount fac-
tor process adds to the empirical challenge in using these preferences in an eco-
nomic model. When ρ = γ, the forward-looking component drops out from the 
SDFs and the preferences become the commonly used power utility model as is 
evident by comparing (7) and (11). Multi-period SDFs are the corresponding 
products of single period discount factors.

The empirical literature has focused on what seems to be large values for 
the parameter γ that adjusts for the continuation value risk. Since continuation 
values reflect all current prospective future consumption, increasing γ enhances 
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the aversion of the decision maker to consumption risk. Applied researchers 
have only been too happy to explore this channel. A fully solved out stochastic 
equilibrium model represents C and V as part of the model solution. For in-
stance log C might have an evolution with the same form as log G as specified 
in (9) along a balanced stochastic growth trajectory. Representing S as in (8) 
presumes a solution for Vt or more conveniently Vt

Ct

 as a function of Xt along 

with a risk adjusted counterpart to Vt and these require a full specification of 
investor information.

For early macro-finance applications highlighting the computation of 
continuation values in equilibrium models, see Hansen et al. (1999) and Tal-
larini (2000). The subsequent work of Bansal and Yaron (2004) showed how 
these preferences in conjunction with forward looking beliefs about stochastic 
growth and volatility have a potentially important impact on even one-period 
(in discrete time) or instantaneous (in continuous time) risk prices through the 
forward-looking channel. Hansen (2011) and Borovička et al. (2011) show that 
the prices of growth rate shocks are large for all payoff horizons with recursive 
utility and when γ is much larger than ρ. By contrast, for power utility models 
with large values of ρ = γ, the growth rate shock prices start off small and only 
eventually become large as the payoff horizon increases. The analyses in Han-
sen et al. (2008) and Restoy and Weil (2011) also presume that one solves for 
the continuation values of consumption plans or their equivalent. This general 
approach to the use of recursive utility for investor preferences makes explicit 
use of the information available to investors and hence does not allow for the 
robustness that I discussed in section 3.26

Sometimes there is a way around this sensitivity to the information structure 
when conducting an econometric analysis. The empirical approach of Epstein 
and Zin (1991) assumes that an aggregate equity return measures the return 
on an aggregate wealth portfolio. In this case the continuation value relative 
to a risk-adjusted counterpart that appears in formula (11) is revealed by the 
return on the wealth portfolio for alternative choices of the preference param-
eters. Thus there is no need for an econometrician to compute continuation 
values provided that data are available on the wealth portfolio return. Epstein 
and Zin (1991) applied GMM methods to estimate preference parameters and 
test model restrictions by altering appropriately the approach in Hansen and 

26 Similarly, many models with heterogenous consumers/investors and incomplete mar-
kets imply pricing relation (1) for marginal agents defined as those who participate in the 
market over the relevant investment period. Such models require either microeconomic 
data and/or equilibria solutions computed using numerical methods.
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Singleton (1982). Given that the one-period SDF can be constructed from con-
sumption and return data, the full investor information set does not have to 
be used in the econometric implementation.27 Campbell (1993) and Campbell 
and Vuolteenaho (2004) explored a related approach using a log-linear approxi-
mation, but this research allowed for market segmentation. Full participation 
in financial markets is not required because the econometric specification that 
is used to study the risk-return relation avoids having to use aggregate con-
sumption. Like Epstein and Zin (1991), this approach features the return on the 
wealth portfolio as measured by an aggregate equity return, but now prospective 
beliefs about that return also contribute to the (approximate) SDF.

4.3 A  Continuing Role for GMM-based Testing

Even when fully specified stochastic equilibria are formulated and used as the 
basis for estimation, there remains the important task of assessing the perfor-
mance of the pricing implications remains. SDFs constructed from fully speci-
fied and estimated stochastic equilibrium models can be constructed ex post and 
used in testing the pricing implications for a variety of security returns. These 
tests can be implemented formally using direct extensions of the methods that 
I described in section 3. Thus the SDF specification remains an interesting way 
to explore empirical implications, and GMM-style statistical tests of pricing re-
strictions remain an attractive and viable way to analyze models.

In the remainder of this essay I will speculate on the merits of one produc-
tive approach to addressing empirical challenges based in part on promising 
recent research.

5  Misspecified Beliefs

So far I have focused primarily on uncertainty outside the model by exploring 
econometric challenges, while letting risk averse agents inside the model have 
rational expectations. Recall that rational expectations uses the model to con-
struct beliefs about the future.28 I now consider the consequences of altering 

27 In contrast to recursive utility models with ρ ≠ γ, often GMM-type methods can be 
applied to habit persistence models of the type analyzed by Sundaresan (1989), Constan-
tinides (1990) and Heaton (1995) without having to specify the full set of information 
available to investors.
28 A subtle distinction exists between two efforts to implement rational expectations 
in econometric models. When the rational expectations hypothis is imposed in a fully 
specified stochastic equilibrium model, this imposion is part of an internally consistent 
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beliefs inside the model for two reasons. First, investor beliefs may differ from 
those implied by the model even if other components of the model are correctly 
specified. For instance, when historical evidence is weak, there is scope for be-
liefs that are different from those revealed by infinite histories of data. Second, 
if some of the model ingredients are not correct but only approximations, then 
the use of model-based beliefs based on an appeal to rational expectations is less 
compelling. Instead there is a rationale for the actors inside the model to adjust 
their beliefs in face of potential misspecification.

For reasons of tractability and pedagogical simplicity, throughout this and 
the next section I use a baseline probability model to represent conditional ex-
pectations, but not necessarily the beliefs of the people inside the model. Pre-
suming that economic actors use the baseline model with full confidence would 
give rise to a rational expectations formulation, but I will explore departures 
from this approach. I present a tractable way to analyze how varying beliefs 
will alter this baseline probability model. Also, I will continue my focus on the 
channel by which SDFs affect asset values. A SDF and the associated risk prices, 
however, are only well-defined relative to a baseline model. Alterations in beliefs 
affect SDFs in ways that can imitate risk aversion. They also can provide an ad-
ditional source of fluctuations in asset values.

My aim in this section is to study whether statistically small changes in be-
liefs can imitate what appears to be a large amount of risk aversion. While I fea-
ture the role of statistical discipline, explicit considerations of both learning and 
market discipline also come into play when there are heterogeneous consumers. 
For many environments there may well be an intriguing interplay between these 
model ingredients, but I find it revealing to narrow my focus. As is evident from 
recent work by Blume and Easley (2006), Kogan et al. (2011) and Borovička 
(2013), distorted beliefs can sometimes survive in the long run. Presumably 
when statistical evidence for discriminating among models is weak, the impact 
of market selection, whereby there is a competitive advantage of confidently 

model specification a model. A model builder may impose these restrictions prior to 
looking at the data. The expectations become “rational” once the model is fit to data, 
assuming that the model is correctly specified. I used GMM and related methods to ex-
amine only a portion of the implications of a fully specified, fully solved model. In such 
applications, an empirical economist is not able to use a model solution to deduce the be-
liefs of economic actors. Instead these methods presume that the beliefs of the economic 
actors are consistent with historical data as revealed by the Law of Large Numbers. This 
approach presumes that part of the model is correctly specified, and the data are used as 
part of the implementation of the rational expectations restrictions.

6490_Book.indb   420 11/4/14   2:30 PM



Uncertainty Outside and Inside Economic Models� 421

knowing the correct model, will at the very least be sluggish. In both this and the 
next section, I am revisiting a theme considered by Hansen (2007a).

5.1  Martingale Models of Belief Perturbations

Consider again the asset pricing formula but now under an altered or perturbed 
belief relative to a baseline probability model:

	
E

S t+
S t

⎛
⎝⎜

⎞
⎠⎟
Yt+⎪Ft

⎡

⎣
⎢

⎤

⎦
⎥ =Qt 	 (12)

where the Ẽ is used to denote the perturbed expectation operator and S̃ is the 
SDF derived under the altered expectations. Mathematically, it is most conve-
nient to represent beliefs in an intertemporal environment using a strictly posi-
tive (with probability one) stochastic process M with a unit expectation for all t 
≥ 0. Specifically, construct the altered conditional expectations via the formula:

	
E Bτ⎪Ft
⎡⎣ ⎤⎦ = E

Mτ

Mt

⎛
⎝⎜

⎞
⎠⎟
Bτ⎪Ft

⎡

⎣
⎢

⎤

⎦
⎥

	

for any bounded random variable Bτ in the date τ ≥ t information set Fτ. The 
martingale restriction imposed on M is necessary for the conditional expecta-
tions for different calendar dates to be consistent.29

Using a positive martingale M to represent perturbed expectations we re-
write (12) as:

	
E

Mt+S t+
MtS t

⎛
⎝⎜

⎞
⎠⎟
Yt+⎪Ft

⎡

⎣
⎢

⎤

⎦
⎥ =Qt

	

which matches our original pricing formula (1) provided that

	 S = MS̃.	 (13)

29 The date zero expectation of random variable Bt that is in the Ft information set may 
be computed in multiple ways

	
E Bt⎪F0
⎡⎣ ⎤⎦ = E

Mτ

M0

⎛
⎝⎜

⎞
⎠⎟
Bt⎪F0

⎡

⎣
⎢

⎤

⎦
⎥ = E

Mt

M0

⎛
⎝⎜

⎞
⎠⎟
Bt⎪F0

⎡

⎣
⎢

⎤

⎦
⎥

	
�for any τ ≥ t. For this equality to hold for all bounded random variables Bt in the date t 
information set, E(Mτ ⎪Ft) = Mt. This verifies that M is a martingale relative to {Ft : t ≥ 0}.
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This factorization emerges because of the two different probability distribu-
tions that are in play. One comes from the baseline model and another is that 
used by investors. The martingale M makes the adjustment in the probabilities. 
Risk prices relative to the ⋅  distribution are distinct from those relative to the 
baseline model. This distinction is captured by (13).

Investor models of risk aversion are reflected in the specification of S̃. For 
instance, example (7) implies an S̃ based on consumption growth.30 The martin-
gale M would then capture the belief distortions including perhaps some of the 
preferred labels in the writings of others such as “animal spirits,” “over-confi-
dence,” “pessimism,” etc. Without allowing for belief distortions, many empirical 
investigations resort to what I think of as “large values of risk aversion.” We can 
see, however, from factorization (13) that once we entertain belief distortions it 
becomes challenging to disentangle risk considerations from belief distortions.

My preference as a model builder and assessor is to add specific structure to 
these belief distortions. I do not find it appealing to let M be freely specified. My 
discussion that follows suggests a way to use some tools from statistics to guide 
such an investigation. They help us to understand if statistically small belief dis-
tortions in conjunction with seemingly more reasonable (at least to me) specifi-
cations of risk aversion can explain empirical evidence from asset markets.

5.2  Statistical Discrepancy

I find it insightful to quantify the statistical magnitude of a candidate belief dis-
tortion by following in part the analysis in Anderson et al. (2003). Initially, I 
consider a specific alternative probability distribution modeled using a positive 
martingale M with unit expectation and I ask if this belief distortion could be 
detected easily from data. Heuristically when the martingale M is close to one, 
the probability distortion is small. From a statistical perspective we may think of 
M as a relative likelihood process of a perturbed model vis a vis a baseline prob-
ability model. Notice that Mt depends on information in Ft, and can be viewed 

as a “data-based” date t relatively likelihood. The ratio Mt +1

Mt

 has conditional 

30 When ρ ≠ γ in (11), continuation values come into play; and they would have to be 
computed using the distorted probability distribution. Thus M would also play a role 
in the construction of S̃. This would also be true in models with investor preferences 
that displayed “habit persistence” that is internalized when selecting investment plans. 
Chabi-Yo et al. (2008) nest some belief distortions inside a larger class of models with 
state-dependent preferences and obtain representations in which belief distortions also 
have an indirect impact on SDFs.
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expectation equal to unity, and this term reflects how new data that arrive be-
tween dates t and t + 1 are incorporated into the relative likelihood.

A variety of statistical criteria measure how close M is to unity. Let me mo-
tivate one such model by bounding probabilities of mistakes. Notice that for a 
given threshold η,

	 log Mt – η ≥ 0	

implies that

	 Mt exp(−η)[ ]α ≥1 	 (14)

for positive values of α. Only α’s that satisfy 0 < α < 1 interest me because only 
these α’s provide meaningful bounds. From (14) and Markov’s Inequality,

	
Pr logMt ≥η⎪F0{ }≤ exp(−ηα)E Mt( )α⎪F0

⎡
⎣

⎤
⎦. 	 (15)

The left-hand side gives the probability that a log-likelihood formed with a 
history of length t exceeds a specified threshold η. Given inequality (15),

	

1

t
logPr logMt ≥η⎪F0{ }≤ −ηα

t
+ 1

t
logE Mt( )α⎪F0

⎡
⎣

⎤
⎦. 	 (16)

The right-hand side of (16) gives a bound for the log-likelihood ratio to ex-
ceed a given threshold η for any 0 < α < 1. The first term on the right-hand side 
converges to zero as t gets large but often the second term does not and indeed 
may have a finite limit that is negative. Thus the negative of the limit bounds the 
decay rate in the probabilities as they converge to zero. When this happens we 
have an example of what is called a large deviation approximation. More data 
generated under the benchmark model makes it easier to rule out an alternative 
model. The decay rate bound underlies a measure of what is called Chernoff 
(1952) entropy. Dynamic extensions of Chernoff entropy are given by first tak-
ing limits as t gets arbitrarily large and then optimizing by the choice of α:

	
κ (M )= − inf

0<α<1
limsup

t→∞

1

t
logE Mt( )α⎪F0

⎡
⎣

⎤
⎦.

	

Newman and Stuck (1979) characterize Markov solutions to the limit used 
in the optimization problem. Minimizing over α improves the sharpness of the 
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bound. If the minimized value is zero, the probability distortion vanishes and 
investors eventually settle on the benchmark model as being correct.

A straightforward derivation shows that even when we change the roles of 
the benchmark model and the alternative model, the counterpart to κ(M) re-
mains the same.31 Why is Chernoff entropy interesting? When this common 
decay rate is small, even long histories of data are not very informative about 
model differences.32 Elsewhere I have explored the connection between this 
Chernoff measure and Sharpe ratios commonly used in empirical finance, see 
Anderson et al. (2003) and Hansen (2007a).33 The Chernoff calculations are of-
ten straightforward when both models (the benchmark and perturbed models) 
are Markovian. In general, however, it can be a challenge to use this measure 
in practice without imposing considerable a priori structure on the alternative 
models.

In what follows, I will explore discrepancy measures that are similar to 
this Chernoff measure but are arguably more tractable to implement. What I 
describe builds directly on my discussion of GMM methods and extensions. 
Armed with factorization (13), approaches that I suggested for the study of SDFs 
can be adapted to the study of belief distortions. I elaborate in the discussion 
that follows.

5.3 I gnored Belief Distortions

Let me return to GMM estimation and model misspecification. Recall that the 
justification for GMM estimation is typically deduced under the premise that 
the underlying model is correctly specified. The possibility of permanent belief 
distortions, say distortions for which κ(M) > 0, add structure to the model mis-
specification. But this is not enough structure to identify fully the belief distor-
tion unless an econometrician uses sufficient asset payoffs and prices to reveal 
the SDF. Producing bounds with this extra structure can still proceed along the 
lines of those discussed in Section 3.2.3 with some modifications. I sketch below 
one such approach.

31 With this symmetry and other convenient properties of κ(M), we can interpret the 
measure as a metric over (equivalence classes of ) martingales.
32 Bayesian and max-min decision theory for model selection both equate decay rates in 
type I and type II error rates.
33 The link is most evident when a one-period (in discrete time) or local (in continuous 
time) measure of statistical discrimination is used in conjunction with a conditional nor-
mal distribution, instead of the large t measure described here.
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Suppose the investors in the model are allowed to have distorted beliefs, and 
part of the estimation is to deduce the magnitude of the distortions. How big 
would these distortions need to be in a statistical sense in order to satisfy the 
pricing restrictions? What follows makes some progress in addressing this ques-
tion. To elaborate, consider again the basic pricing relation with distorted beliefs 
written as unconditional expectation:

	
E

Mt+S t+
MtS t

⎛
⎝⎜

⎞
⎠⎟

(Yt+ ′) Zt −(Qt ′) Zt

⎡

⎣
⎢

⎤

⎦
⎥ = 0.

	

As with our discussion of the study of SDFs without parametric restrictions, 
we allow for a multiplicity of possible martingales and impose bounds on expec-

tations of convex functions of the ratio 
Mt+

Mt

.

To deduce restrictions on M, for notational simplicity I drop the t subscripts 
and write the pricing relation as:

	

E(ms ′y − ′q )= 0

E(m −1)= 0.
	 (17)

To bound properties of m solve

	
inf
m>0

E[φ(m)] 	 (18)

subject to (17) where ϕ is given by equation (5). This formulation nests many 
of the so-called F-divergence measures for probability distributions including 
the well known Kullback-Leibler divergence (θ = –1, 0). A Chernoff-type mea-
sure can be imputed by computing the bound for –1 < θ < 0 and optimizing 
after an appropriate rescaling of the objective by θ(1 + θ). As in the previous 
analysis of Section 3.2.3, there may be many solutions to the equations given in 
(17). While the minimization problem selects one of these, I am interested in 
this optimization problem to see how small the objective can be in a statistical 
sense. If the infimum of the objective is small, then statistically small changes in 
distributions suffice to satisfy the pricing restrictions. Such departures allow for 
“behavior biases” that are close statistically to the benchmark probabilities used 
in generating the data.

I have just sketched an unconditional approach to this calculation by al-
lowing conditioning information to be used through the “back door” with 
the specification of Z but representing the objective and constraints in terms 
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of unconditional expectations. It is mathematically straightforward to study a 
conditional counterpart, but the statistical implementation is more challenging. 
Application of the Law of Iterated Expectations still permits an econometrician 
to condition on less information than investors, so there continues to be scope 
for robustness in the implementation. By omitting information, however, the 
bounds are weakened.

By design, this approach allows for the SDF to be misspecified, but in a way 
captured by distorted beliefs. If the SDF S̃ depends on unknown parameters, say 
subjective discount rates, intertemporal elasticities of substitution or risk aver-
sion parameters, then the parameter estimation can be included as part of the 
minimization problem. Parameter estimation takes on a rather different role in 
this framework than in GMM estimation. The large sample limits of the result-
ing parameter estimators will depend on the choice of θ unless (as assumed in 
much of existing econometrics literature) there are no distortions in beliefs.34 
Instead of featuring these methods as a way to get parameter estimators, they 
have potential value in helping applied econometricians infer how large prob-
ability distortions in investor beliefs would have to be from the vantage point 
of statistical measures of discrepancy. Such calculations would be interesting 
precursors or complements to a more structured analysis of asset pricing with 
distorted beliefs.35 They could be an initial part of an empirical investigation and 
not the ending point as in other work using bounds in econometrics.

Martingales are present in SDF processes, even without resort to belief dis-
tortions. Alvarez and Jermann (2005), Hansen and Scheinkman (2009), Hansen 

34 Extensions of a GMM approach have been suggested based on an empirical likelihood 
approach following Qin and Lawless (1994) and Owen (2001) (θ = –1), a relative-entropy 
approach of Kitamura and Stutzer (1997) (θ = 0), a quadratic discrepancy approach of 
Antoine et al. (2007) (θ = 1) and other related methods. Interestingly, the quadratic (θ = 
1) version of these methods coincides with a “continuously updating” GMM estimator of 
Hansen et al. (1996). Empirical likelihood methods and their generalizations estimate a 
discrete data distribution given the moment conditions such as pricing restrictions. From 
the perspective of parametric efficiency, Newey and Smith (2004) show these methods 
provide second-order asymptotic refinements to what is often a “second-best” efficiency 
problem. Recall that the statistical efficiency problem studied in Hansen (1982b) took the 
unconditional moment conditions as given and did not seek to exploit the flexibility in 
their construction giving rise to a second-best problem. Perhaps more importantly, these 
methods sometimes have improvements in finite sample performance but also can be 
more costly to implement. The rationales for such methods typically abstract from belief 
distortions of the type featured here and typically focus on the case of iid data generation.
35 Although Gosh et al. (2012) do not feature belief distortions, with minor modification 
and reinterpretation their approach fits into this framework with θ = 0.
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(2011) and Bakshi and Chabi-Yo (2012) all characterize the role of martingale 
components to SDF’s and their impact on asset pricing over long investment ho-
rizons. Alvarez and Jermann (2005), Bakshi and Chabi-Yo (2012) and Borovička 
et al. (2014a) suggest empirical methods that bound this martingale component 
using a very similar approach to that described here. Since there are multiple 
sources for martingale components to SDF’s, adding more structure to what de-
termines other sources of long-term pricing can play an essential role in quanti-
fying the martingale component attributable to belief distortions. 

In summary, factorization (13) gives an abstract characterization of the chal-
lenge faced by an econometrician outside the model trying to disentangle the ef-
fects of altered beliefs from the effects of risk aversion on the part of investors in-
side the model. There are a variety of ways in which beliefs could be perturbed. 
Many papers invoke “animal spirits” to explain lots of empirical phenomenon in 
isolation. However, these appeals alone do not yield the formal modeling inputs 
needed to build usable and testable stochastic models. Adding more structure 
is critical to scientific advancement if we are to develop models that are rich 
enough to engage in the type of policy analysis envisioned by Marschak (1953), 
Hurwicz (1962) and Lucas (1976). What follows uses decision theory to moti-
vate some particular constructions of the martingale M.36

Next I explore one strategy for adding structure to the martingale alterations 
to beliefs that I introduced in this section.

6 Unc ertainty  and Decision Theory

Uncertainty often takes a “back seat” in economic analyses using rational expec-
tations models with risk averse agents. While researchers have used large and 
sometimes state dependent risk aversion to make the consequences of exposure 
to risk more pronounced, I find it appealing to explore uncertainty in a con-
ceptually broader context. I will draw on insights from decision theory to sug-
gest ways to enhance the scope of uncertainty in dynamic economic modeling. 
Decision theorists, economists and statisticians have wrestled with uncertainty 
for a very long time. For instance, prominent economists such as Keynes (1921) 
and Knight (1921) questioned our ability to formulate uncertainty in terms of 

36 An alternative way to relax rational expectations is to presume that agents solve their 
optimization problems using the expectations measured from survey data. See Piazzesi 
and Schneider (2013) for a recent example of this approach in which they fit expectations 
to time series data to produce the needed model inputs.
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precise probabilities. Indeed Knight (1921) posed a direct challenge to time se-
ries econometrics:

We live in a world full of contradiction and paradox, a fact of which 
perhaps the most fundamental illustration is this: that the existence 
of a problem of knowledge depends on the future being different than 
the past, while the possibility of the solution of the problem depends 
on the future being like the past.

While Knight’s comment goes to the heart of the problem, I believe the most 
productive response is not to abandon models but to exercise caution in how we 
use them. How might we make this more formal? I think we should use model 
misspecification as a source of uncertainty. One approach that has been used 
in econometric model-building is to let approximation errors be a source for 
random disturbances to econometric relations. It is typically not apparent, how-
ever, where the explicit structure comes from when specifying such errors; nor 
is it evident that substantively interesting misspecifications are captured by this 
approach. Moreover, this approach is typically adopted for an outside modeler 
but not for economic actors inside the model. I suspect that investors or entre-
preneurs inside the models we build also struggle to forecast the future.

My co-authors and I, along with many others, are reconsidering the concept 
of uncertainty and exploring operational ways to broaden its meaning. Let me 
begin by laying out some constructs that I find to be helpful in such a discussion. 
When confronted with multiple models, I find it revealing to pose the result-
ing uncertainty as a two-stage lottery. For the purposes of my discussion, there 
is no reason to distinguish unknown models from unknown parameters of a 
given model. I will view each parameter configuration as a distinct model. Thus 
a model, inclusive of its parameter values, assigns probabilities to all events or 
outcomes within the model’s domain. The probabilities are often expressed by 
shocks with known distributions and outcomes are functions of these shocks. 
This assignment of probabilities is what I will call risk. By contrast there may be 
many such potential models. Consider a two-stage lottery where in stage one we 
select a model and in stage two we draw an outcome using the model probabili-
ties. Call stage one model ambiguity and stage two risk that is internal to a model.

To confront model ambiguity, we may assign subjective probabilities across 
models (including the unknown parameters). This gives us a way of averaging 
model implications. This approach takes a two-stage lottery and reduces it to a 
single lottery through subjective averaging. The probabilities assigned by each of 
a family of models are averaged using the subjective probabilities. In a dynamic 
setting in which information arrives over time, we update these probabilities 
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using Bayes’ Rule. de Finetti (1937) and Savage (1954) advocate this use of sub-
jective probability. It leads to an elegant and often tractable way to proceed. 
While both de Finetti (1937) and Savage (1954) gave elegant defenses for the use 
of subjective probability, in fact they both expressed some skepticism or caution 
in applications. For example, de Finetti (as quoted by Dempster (1975) based on 
personal correspondence) wrote:37

Subjectivists should feel obligated to recognize that any opinion 
(so much more the initial one) is only vaguely acceptable . . . So 
it is important not only to know the exact answer for an exactly 
specified initial problem, but what happens changing in a reasonable 
neighborhood the assumed initial opinion.

Segal (1990) suggested an alternative approach to decision theory that avoids 
reducing a two-stage lottery into a single lottery. Preserving the two-stage struc-
ture opens the door to decision making in which the behavioral responses for 
risk (stage two) are distinct from those for what I will call ambiguity (stage one). 
The interplay between uncertainty and dynamics adds an additional degree of 
complexity into this discussion, but let me abstract from that complexity tem-
porarily. Typically there is a recursive counterpart to this construction that in-
corporates dynamics and respects the abstraction that I have just described. It 
is the first stage of this lottery that will be the focus of much of the following 
discussion.

6.1  Robust Prior Analysis and Ambiguity Aversion

One possible source of ambiguity, in contrast to risk, is in how to assign sub-
jective probabilities across the array of models. Modern decision theory gives 
alternative ways to confront this ambiguity from the first stage in ways that are 
tractable. Given my desire to use formal mathematical models, it is important to 
have conceptually appealing and tractable ways to represent preferences in envi-
ronments with uncertainty. Such tools are provided by decision theory. Some of 
the literature features axiomatic development that explores the question of what 
is a “rational” response to uncertainty.

The de Finetti quote suggests the need for a prior sensitivity analysis. When 
there is a reference to a decision problem, an analysis with multiple priors can 

37 Similarly, Savage (1954) wrote: “No matter how neat modern operational definitions of 
personal probability may look, it is usually possible to determine the personal probabili-
ties of events only very crudely.” See Berger (1984) for further discussion.
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deduce bounds on the expected utility consequences of alternative decisions, 
and more generally a mapping from alternative priors into alternative expected 
outcomes. Building on discussions in Walley (1991) and Berger (1994), there 
are multiple reasons to consider a family of priors. This family could represent 
the views of alternative members of an audience, but they could also capture 
the ambiguity to a single decision maker struggling with which prior should be 
used. Ambiguity aversion as conceived by Gilboa and Schmeidler (1989) and 
others confronts this latter situation by minimizing the expected utility for each 
alternative decision rule. Max-min utility gives a higher rank to a decision rule 
with the larger expected utiltiy outcome of this minimization.38

Max-min utility has an extension whereby the minimization over a set of 
priors is replaced by a minimization over priors subject to penalization. The 
penalization limits the scope of the prior sensitivity analysis. The penalty is mea-
sured relative to a benchmark prior used as a point of reference. A discrepancy 
measure for probability distributions, for instance some of the ones I discussed 
previously, enforce the penalization. See Maccheroni et al. (2006) for a general 
analysis and Hansen and Sargent (2007) for implications using the relative en-
tropy measure that I already mentioned. Their approach leads to what is called 
variational preferences.

For either form of ambiguity aversion, with some additional regularity con-
ditions, a version of the Min-Max Theorem rationalizes a worst-case prior. The 
chosen decision rule under ambiguity aversion is also the optimal decision rule 
if this worst-case prior were instead the single prior of the decision maker. Dy-
namic counterparts to this approach do indeed imply a martingale distortion 
when compared to a benchmark prior that is among the set of priors that are en-
tertained by a decision maker. Given a benchmark prior and a dynamic formu-
lation, this worst-case outcome implies a positive martingale distortion of the 
type that I featured in Section 5. In equilibrium valuation, this positive martin-
gale represents the consequences of ambiguity aversion on the part of investors 
inside the model. This martingale distortion emerges endogenously as a way to 
confront multiple priors that is ambiguity averse or robust. In sufficiently simple 
environments, the decision maker may in effect learn the model that generates 
the data in which case the martingale may converge to unity.

There is an alternative promising approach to ambiguity aversion. A deci-
sion theoretic model that captures this aversion can be embedded in the analy-
sis of Segal (1990) and Davis and Pate-Cornell (1994), but the application to 

38 See Epstein and Schneider (2003) for a dynamic extension that preserves a recursive 
structure to decision making.
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ambiguity aversion has been developed more fully in Klibanoff et al. (2005) 
and elsewhere. It is known as a smooth ambiguity model of decision making. 
Roughly speaking, distinct preference parameters dictate behavior responses 
to two different sources of uncertainty. In addition to aversion to risk given a 
model captured by one concave function, there is a distinct utility adjustment 
for ambiguity aversion that emerges when weighting alternative models using 
a Bayesian prior. While this approach does not in general imply a martingale 
distortion for valuation, as we note in Hansen and Sargent (2007), such a distor-
tion will emerge with an exponential ambiguity adjustment. This exponential 
adjustment can be motivated in two ways, either as a penalization over a fam-
ily of priors as in variational preferences or as a smooth ambiguity behavioral 
response to a single prior.

6.2 U nknown Models and Ambiguity Aversion

I now consider an approach with an even more direct link to the analysis in 
Section 5. An important initiator of statistical decision theory, Wald (1939), ex-
plored methods that did not presume a priori weights could be assigned across 
models. Wald (1939)’s initial work generated rather substantial literatures in sta-
tistics, control theory and economics. I am interested in such an approach as a 
structured way to perform an analysis of robustness. The alternative models rep-
resented as martingales may be viewed as ways in which the benchmark prob-
ability model can be misspecified. To explore robustness, I start with a family of 
probability models represented as martingales against a benchmark model. Dis-
crepancy measures are most conveniently expressed in terms of convex func-
tions of the martingales as in Section 5. Formally the ambiguity is over models, 
or potential misspecifications of a benchmark model.

What about learning? Suppose that the family of positive martingales with 
unit expectations is a convex set. For any such martingale M in this set and some 
0 < ω < 1, construct the mixture ωM + (1 – ω) is a positive martingale with unit 
expedations. Notice that

	

ωMt+τ +(1−ω)1

ωMt +(1−ω)1
=
ωMt

Mt+τ

Mt

⎛
⎝⎜

⎞
⎠⎟
+(1−ω)1

ωMt +(1−ω)1
.
	

The left-hand side is used to represent the conditional expectations operator 
between dates t + τ and t. If we interpret ω as the prior assigned to model M and 
(1 – ω) as the prior assigned to a benchmark model, then the right-hand side 
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reveals the outcome of Bayes’ rule conditioning on date t information where 
Mt is a date t likelihood ratio between the two original models. Since all convex 
combinations are considered, we thus allow all priors including point priors. 
Here I have considered mixtures of the two models, but the basic logic extends 
to a setting with more general a priori averages across models.

Expected utility minimization over a family of martingales provides a trac-
table way to account for this form of ambiguity aversion, as in max-min utility. 
Alternatively the minimization can be subject to penalization as in variational 
preferences. Provided that we can apply the Min-Max Theorem, we may again 
produce a (constrained or penalized) worst-case martingale distortion. The am-
biguity averse decision maker behaves as if he or she is optimizing using the 
worst-case martingale as the actual probability specification. This same martin-
gale shows up in first-order conditions for optimization and hence in equilib-
rium pricing relationships. With this as if approach I can construct a distorted 
probability starting from a concern about model misspecification. The focus on 
a worst-case distortion is the outcome of a concern for robustness to model 
misspecification.

Of course there is no “free lunch” for such an analysis. We must limit the 
family of martingales to obtain interesting outcomes. The idea of conducting a 
sensitivity analysis would seem to have broad appeal, but of course the “devil is 
in the details.” Research from control theory as reflected in Basar and Bernhard 
(1995) and Petersen et al. (2000), Hansen and Sargent (2001) and Hansen et 
al. (2006) and others has used discrepancies based on discounted versions of 
relative entropy measured by E[Mt log Mt⎪F0]. For a given date t this measure 
is the expected log-likelihood ratio under the M probability model and lends 
itself to tractable formulas for implementation.39 Another insightful formula-
tion is given by Chen and Epstein (2002), which targets misspecification of 
transition densities in continuous time. Either of these approaches requires 
additional parameters that restrict the search over alternative models. The sta-
tistical discrepancy measures described in Section 5 provide one way to guide 
this choice.40

As Hansen and Sargent (2007) emphasize, it is possible to combine this mul-
tiple models approach with a multiple priors approach. This allows simultane-
ously for multiple benchmark models and potential misspecification. In addi-
tion there is ambiguity in how to weight the alternative models.

39 See Strzalecki (2011) for an axiomatic analysis of associated preferences.
40 See Anderson et al. (2003) for an example of this approach.
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6.3  What Might We Achieve?

For the purposes of this essay, the important outcome of this discussion is the 
ability to use ambiguity aversion or a concern about model misspecification as 
a way to generate what looks like distorted beliefs. In an application, Chamber-
lain (2000) studied individual portfolio problems from the vantage point of an 
econometrician (who could be placed inside a model) using max-min utility 
and featuring calculations of the endogenously determined worst-case models 
under plausible classes of priors. These worst-case models give candidates for 
the distorted beliefs mentioned in the previous section. A worst-case martingale 
belief distortion is part of the equilibrium calculation in the macroeconomic 
model of Ilut and Schneider (2014). These authors study simultaneously pro-
duction and pricing using a recursive max-min formulation of the type advo-
cated by Epstein and Schneider (2003) and introduce ambiguity shocks as an 
exogenous source of fluctuations.

Ambiguity aversion with unknown models provides an alternative to as-
suming large values of risk aversion parameters. This is evident from the control 
theoretic link between what is called risk sensitivity and robustness, noted in a 
variety of contexts including Jacobson (1973), Whittle (1981) and James (1992). 
Hansen and Sargent (1995) and Hansen et al. (2006) suggest a recursive for-
mulation of risk sensitivity and link it to recursive utility as developed in the 
economics literature. While the control theory literature features the equivalent 
interpretations for decision rules, Hansen et al. (1999), Anderson et al. (2003), 
Maenhout (2004) and Hansen (2011) consider its impact on security market 
prices. This link formally relies on the use of relative entropy as a measure of dis-
crepancy for martingales, but more generally I expect that ambiguity aversion 
often will have similar empirical implications to (possibly extreme) risk aversion 
for models of asset pricing. Formal axiomatic analyses can isolate behaviorally 
distinct implications. For this reason I will not overextend my claims of the ob-
servational similarity between risk and ambiguity. Axiomatic distinctions, how-
ever, are not necessarily present in actual empirical evidence.

The discussion so far produces an ambiguity component to prices in asset 
markets in addition to the familiar risk prices. There is no endogenous rationale 
for market compensations fluctuating over time. While exogenously specified 
stochastic volatility commonly used in asset pricing models also delivers fluc-
tuations, this is a rather superficial success that leaves open the question of what 
the underlying source is for the implied fluctuations. The calculations in Han-
sen (2007a) and Hansen and Sargent (2010) suggest an alternative mechanism. 
Investors concerned with the misspecification of multiple models view these 
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models differently in good versus bad times. For instance, persistence in eco-
nomic growth is welcome in good times but not in bad times. Given ambiguity 
about how to weight models and aversion to that ambiguity, investors’ worst-
case models shift over time leading to changes in ambiguity price components.

Introducing uncertainty about models even with a unique prior will amplify 
risk prices, although for local risk prices this impact is sometimes small (see 
Hansen and Sargent (2010) for a discussion). Introducing ambiguity aversion 
or a concern about model misspecification will lead to a different perspective 
on both the source and magnitude of the market compensations for exposure to 
uncertainty. Moreover, by entertaining multiple models and priors over those 
models there is additional scope for variation in the market compensations as 
investors may fear different models depending on the state of the economy.41

A framework for potential model misspecification also gives a structured 
way to capture “over-confidence.” Consider an environment with multiple 
agents. Some express full commitment to a benchmark model. Others realize 
the model is flawed and explore the consequences of model misspecification. 
If indeed the benchmark model is misspecified, then agents of the first type are 
over-confident in the model specification. Such an approach offers a novel way 
to capture this form of heterogeneity in preferences.

What is missing in my discussion of model misspecification is a prescription 
for constructing benchmark models and/or benchmark priors. Benchmarks are 
important for two reasons in this analysis. They are used as a reference point for 
robustness and as a reference point for computing ambiguity prices. I like the 
transparency of simpler models especially when they have basis in empirical 
work, and I view the ambition to construct the perfect model to be unattainable.

7  Conclusion

I take this opportunity to make four concluding observations.

1.	 The first part of my essay explored formal econometric methods that 
are applicable to a researcher outside the model when actors inside the 
model possess rational expectations. I showed how to connect GMM es-
timation methods with SDF formulations of stochastic discount factors 

41 See Collin-Dufresne et al. (2013) for a Bayesian formulation with parameter learning 
that generates interesting variation in risk prices. Given that recursive utility and a pref-
erence for robustness to model misspecification have similar and sometimes identical 
implications for asset pricing in other settings, it would be of interest to see if this simi-
larity carries over to the parameter learning environments considered by these authors.
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to estimate and assess asset pricing models with connections to the mac-
roeconomy. I also described how to use SDF formulations to assess the 
empirical implications of asset pricing models more generally. I then 
shifted to a discussion of investor behavior inside the model, perhaps 
even motivated by my own experiences as an applied econometrician. 
More generally these investors may behave as if they have distorted be-
liefs. I suggested statistical challenges and concerns about model mis-
specification as a rationale for these distorted beliefs.

2.	 I have identified ways that a researcher might alter beliefs for the actors 
within a model, but I make no claim that this is the only interesting way 
to structure such distortions. Providing structure, however, is a prereq-
uisite to formal assessment of the resulting models. I have also suggested 
statistical measures that extend the rational expectations appeal to the 
Law of Large Numbers for guiding the types of belief distortions that are 
reasonable to consider. This same statistical assessment should be a valu-
able input into other dynamic models within which economic agents 
have heterogeneous beliefs.

3.	 How best to design econometric analysis in which econometricians and 
agents formally acknowledge this misspecificaton is surely a fertile av-
enue for future research. Moreover, there remains the challenge of how 
best to incorporate ambiguity aversion or concerns about model mis-
specification into a Marschak (1953), Hurwicz (1962) and Lucas (1972) 
style study of counterfactuals and policy interventions.

4.	 Uncertainty, generally conceived, is not often embraced in public dis-
cussions of economic policy. When uncertainty includes incomplete 
knowledge of dynamic responses, we might well be led away from argu-
ments that “complicated problems require complicated solutions.” When 
complexity, even formulated probabilistically, is not fully understood by 
policy makers, perhaps it is the simpler policies that are more prudent. 
This could well apply to the design of monetary policy, environmental 
policy and financial market oversight. Enriching our toolkit to address 
formally such challenges will improve the guidance that economists give 
when applying models to policy analysis.
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