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INTRODUCTION

The fundamental underpinnings of theoretical chemistry were uncovered in
a relatively short period at the beginning of the present century. Rutherford's
discovery of the nucleus in 1910 completed the identification of the con-
stituent subparticles of atoms and molecules and was followed shortly there-
after by the Bohr treatment of electronic orbits in atoms, the “old quantum
theory”. The relation between the positive nuclear charge, atomic number
and position of an atom in the periodic table was uncovered by 1913. It prov-
ed difficult to extend Bohr's orbits to a polyatomic situation and the next ad-
vance had to await the development of the wave theory of matter and the as-
sociated quantum mechanics in the early 1920s. By 1926, Heisenberg had
developed matrix mechanics and Schrédinger had proposed the basic non-
relativistic wave equation governing the motion of nuclei and electrons in
molecules. The latter,

HY =LY (1

is a differential eigenvalue equation for the energy E and wavefunction ¥ of
a particular state. H is the Hamiltonian operator and ¥ depends on cartesian
and spin coordinates of the component particles. The only further restric-
tions are the permutational symmetry requirements for ¥ (antisymmetry for
fermions such as electrons and symmetry for bosons). A relativistic generali-
zation of this equation was proposed a short time later by Dirac.

The Schroédinger equation is easily solved for the hydrogen atom and
found to give results identical to the earlier treatment of Bohr. With inclusion
of relativistic corrections via the Dirac equation, almost perfect agreement
was found with experimental spectroscopic data. However, exact solution for
any other system was not found possible, leading to a famous remark by Dirac
in 1929:

“The fundamental laws necessary for the mathematical treatment of a large
part of physics and the whole of chemistry are thus completely known, and
the difficulty lies only in the fact that application of these laws leads to equa-
tions that are too complex to be solved”

This was a cry both of triumph and of despair. It marked the end of the
process of fundamental discovery in chemistry but left a collossal mathe-
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matical task of implementation. In retrospect, the implied finality of the
claim seems excessively bold. In 1929, there had only been one preliminary
approximate quantum mechanical calculation on the hydrogen molecule by
Heitler and London, leading to a value of the bond energy of only about 70%
of the experimental value. Nevertheless, the physicists were highly confident
and most moved on to study the internal structure of the nucleus during the
1930s. In fact, their boldness was apparently justified, for no significant
failure of the full Schrodinger-Dirac treatment has ever been demonstrated.

This was the challenge presented to the early quantum chemists by 1930.
Given the hopelessness of exact solution, how would it be possible to develop
approximate mathematical procedures that could (a) assist the qualitative in-
terpretation of chemical phenomena; and (b) provide predictive capability.
Attempts to approach this problem by a model approach is the topic ad-
dressed here.

FEATURES OF THEORETICAL MODELS

A theoretical model for any complex process is an approximate but well-defined
mathematical procedure of simulation. When applied to chemistry, the task is
to use input information about the number and character of component par-
ticles (nuclei and electrons) to derive information and understanding of
resultant molecular behavior. Five stages may be distinguished in the devel-
opment and use of such a model:

Target

A target accuracy must be selected. A model is not likely to be of much value
unless it is able to provide clear distinction between possible different modes
of molecular behavior. As the model becomes quantitative, the target should
be that data is reproduced and predicted within experimental accuracy. For
energies, such as heats of formation or ionization potentials, a global ac-
curacy of 1 kcal/mole would be appropriate.

Formulation

The approximate mathematical procedure must be precisely formulated.
This should be general and continuous as far as possible. Thus, particular pro-
cedures for particular molecules or particular symmetries should be avoided.
If this can be done, the procedure becomes a full theoretical model chemisiry,
which can be explored in detail as far as available resources permit.

Implementation

The formulated method has to be implemented in a form, which permits its
application in reasonable times and at reasonable cost. In recent times, this
stage involves the development of efficient and easily used computer pro-
grams. It is closely comparable to the stage of building equipment in an ex-
perimental investigation.
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Verification

The next step is to test the model against known chemical facts to determine
whether the target has been achieved. If quantitative accuracy is being
sought, this can be done by various statistical criteria such as the root-mean-
square difference between the results of the theoretical model and experi-
mental data. In selecting such a data-set, it is important to make it as broad as
possible, while limiting it to experimental facts known to be of high quality. If
the results of such a comparison do meet the target requirements, the model
may be said to be validated.

Prediction

Finally, if the model has been properly validated according to some such
criterion, it may be applied to chemical problems to which the answer is un-
known or in dispute. If the experimental data-set is sufficiently broad, there is
a reasonable expectation that the results will be accurate to something like
the target accuracy. This stage, of course, is the one of most interest to the
larger chemical community.

One further aspect of theoretical models is the introduction of empirical
parameterization. Models which utilize only the fundamental constants of
physics are generally termed ab initio; if some parameters are introduced
which are determined by fitting to some experimental data, the methods are
semi-empirical . Clearly, there is a wide range of possible empiricism, as will be
noted in subsequent parts of this article.

HARTREE-FOCK MODELS

During the 1930s, most work was of a qualitative nature, treating the electrons
as moving in independent molecular orbitals. However, the foundations of the
the orbital theory of many-electron systems was laid by Hartree, Fock and
Slater. If the 2n electrons in a closed-shell molecule are assigned to a set of n
molecular orbitals y, (i = 1,...n), the corresponding many-electron wavefunc-
tion can be written

¥ = (n!)~2det{ (1) (¥1.8) (¥20)..] 2)

Here the y, are taken to be orthonormal and a and f are spin functions. This
single-configuration wavefunction is usually described as a Slater determinant.

If the molecular orbitals y, are varied to minimize the energy, calculated as
the expectation value of the full Hamiltonian H,

E =< VY|H|V > (3)

then the energy Eis fully defined and, according to the variational principle,
is an upper bound for the exact Schrodinger energy from the full wave equa-
tion (1). This procedure leads to a set of coupled differential equations for
the v, as first derived by Fock. The method is known as Hartree-Fock theory,
early applications having been made (to atoms) by Hartree.
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Following the break due to World-War II, work on quantum chemistry re-
sumed in a number of countries. In Cambridge, Lennard-Jones and his group
(of which I became a member in 1948) reexamined the Hartree-Fock equa-
tions with a view to transforming the orbitals y, into localized or equivalent
orbitals, representing bonding and lone electron pairs, concepts widely used
in the qualitative description of molecular structure. However, the coupled 3-
dimensional differential equations appeared intractable and little progress
was made towards their solution.

A major advance occurred in 1951 with the publication from Chicago of
the Roothaan equations [1]. (Actually, these had been circulated in a report
some time earlier.) Roothaan considered molecular orbitals that were restrict-
ed to be linear combinations of a set of prescribed 3-dimensional l-electron
functions xy(u =1,2,.N, N>n).Thus

N
Wi = D CuiXu 4)
p=1

Variation of the total energy (3) was then carried out with respect to the co-
efficients ¢ ;. This leads to a set of algebraic equations which can be written in
matrix form (using real functions and atomic units throughout),

FC = SCE (5)
where
Fu = Hu + ; Pro[(uv|Ao) — (uAlvo) /2] (6)
H,, = /XuHXVdT (7)
S = / XuXvdT 8)
E;; = €;0;5 9
P,=2 i CuiCui (10)

(o) = [ [xuLxOW/r0@x(@)dndr a1

In these and subsequent equations, we follow a useful practice of using
roman suffixes for molecular orbitals y and greek for the expansion func-
tions y. H is the core Hamiltonian, describing motion of a single electron
moving in the bare field of the nuclei. The eigenvalues ¢; are the one-electron
Fock energies, the lowest n corresponding to the occupied molecular orbitals
1,2,..n.

These nonlinear equations provide a complete mathematical model if the
prescribed functions y are uniquely specified by the nuclear positions. They
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are often referred to as self consistent field (SCF) equations. In the earliest ver-
sions of molecular orbital theory, the X, were chosen to be the atomic orbitals
of the component atoms, in which case the theory was described as
LCAOSCEF for ‘linear combination of atomic orbitals’. More generally, the set
{ x”} is referred to as the basis set. Normal practice is to choose basis functions
which are centered at the nuclei and depend only on the atomic number
(positive charge) of that nucleus.

The Roothaan-type of equations can be extended to electron configura-
tions in which some orbitals are doubly occupied and some singly. Another
extension is one in which electrons of o-spin and B-spin are assigned to dif-
ferent molecular orbitals y* and yP. This is usually referred to as a spin-un-
restricted configuration. There will be two sets of coefficients ¢ and f. The
corresponding generalization of the Roothaan equations was published by
the author and Nesbet in 1954 [2]. These are usually denoted as Unrestricted
Hartree-Fock or UHF, and the option of double and single occupation as
Restricted Open Hartree-Fock or ROHFE

The introduction of basis set expansions played a major role in the devel-
opment of quantum chemistry. It changed the mathematical task from the
numerical solution of coupled differential equations (following the atomic
work of Hartree) to the double challenge of evaluation of the 3- or 6-dimen-
sional integrals (7),(8) and (11), followed by solution of the algebraic SCF
equations (5). If analytic integration were possible, the model could become
precise in the sense that good arithmetic correctness would be possible, even
though the underlying approximations (use of a single configuration deter-
minant and a finite basis) might still be unsatisfactory.

During the 1950s, integral evaluation was regarded as the main barrier to
progress. The best choice of basis functions for LCAOSCF theory appeared to
be Slater-type atomic orbitals (STO), which have exponential radial parts by
analogy to the hydrogen atom. The one- and two-electron integrals (N,(8)
and (11) can then be evaluated analytically in the two-center case. However,
great difficulties were encountered for the three- and four-center cases. It was
common to describe this impasse as “the nightmare of the integrals”.

There were two responses to the integral difficulties. One was to make ap-
proximations for the more difficult integrals and to introduce parameters for
others, with values obtained by empirical fits to experimental data. This prac-
tice became known as semi-empirical. The alternative of proceeding without ap-
proximation or empirical parameterization was, at the time, necessarily
limited to very small molecules and became known as the ab initio approach.
The most widely used semi-empirical methods were based on the zero-dif-
ferential-overlap approximation, in which products of different atomic oritals
XX, are neglected in most integrals. This approximation, when applied to
the melectrons of conjugated organic molecules, became known as the
Pariser-Parr-Pople (PPP) theory [3-5]. It was later generalized to the treat-
ment of all valence electrons in the CNDO and INDQO theories [6] (1964-6)
and then pursued at a more empirical level by the group of M.J.S.Dewar. The
CNDO/INDO methods were genuine chemical models in the sense that they
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could be used to study many molecules, vary structure to determine equi-
librium geometries and generate potential surfaces. However, they were limit-
ed by uncertainty over the consequences of the massive integral approxima-
tions and the large number of empirical parameters.

Within the ab initio community, a truly major development was the intro-
duction of gaussian-type basis functions. In 1950, S.F. Boys [7], working in
Cambridge, had demonstrated that all integrals in SCF theory could be
evaluated analytically if the radial parts had the form P(x,x) exp(—1%), where
P(x,y,z) is any polynomial in the cartesian coordinates x,%z. Initially, this ap-
peared to be of limited value, since single gaussian functions were poor ap-
proximations to atomic orbitals, but it was clear that prospects would improve
if larger numbers of basis functions could be handled. For several years,
there was competition between proponents of Slater-type and gaussian-type
basis sets.

The 1950s also saw the introduction of computers into quantum chemistry.
By the time of the 1959 meeting, there were already several groups develop-
ing ab initio programs, using both Slater and gaussian bases. Early
codes for 2-center integrals with Slater basis functions were developed in
Chicago and used by Ransil in the first full LCAOSCF treatment of diatomic
hydrides. At the same meeting, Boys presented several prescient papers
describing simple SCF calculations using gaussians. During the early 1960s,
other general purpose programs were developed, notably the gaussian pack-
ages POLYATOM and IBMOL, leading to a number of individual computa-
tions of molecular orbitals at the LCAO or minimal basis level.

My own research group began ab initio work in 1968 with the development
of the GAUSSIAN program. At that time, the relative cost of ab initio
LCAOSCF and CNDO computations on small organic molecules was over
1000. The original intention was to use full ab initio results to test various in-
tegral approximations that were less severe than the use of zero differential
overlap. However, in the course of developing the program, Warren Hehre
and I were able to generate a new integral algorithm that improved efficien-
cy for highly contracted gaussian basis sets by more than two orders of mag-
nitude [8]. This was based on a method of axis rotation inside inner loops,
thereby limiting the number of arithmetic operations in the innermost sec-
tions of the program. Using a procedure of least-squares fitting Slater-type
basis functions by a fixed contraction of K gaussians, we were able to repro-
duce the results of earlier full Slater results on a series of small molecules.
The choice K=3 proved adequate and led to the STO-3G basis and the gene-
ral theoretical model HF/STO-3G. This was published in 1969 [9] and the
code was made generally available as GAUSSIAN70 shortly thereafter.

Investigation of the minimal HF/STO-3G model quickly showed major
failures. Comparison of some isomeric species (e.g. propene and cyclopro-
pane) showed too much stability for single bonds, relative to multiple bonds.
This can be traced to the failure of the minimal basis to describe anisotropic
atoms. In acetylene, for example, the carbon 2pc atomic orbitals should be
much tighter than 2pm; this effect cannot be properly simulated by the
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isotropic structure implied by a minimal basis with identical 2p functions in
all three directions. This difficulty can be overcome by using two basis func-
tions per valence atomic orbital instead of one. Such a basis is 6-31G, which
has a single contracted 6-gaussian basis function for the inner shell, a set of
inner 3-contracted and a set of outer uncontracted gaussians for the valence
shell of each atom. This is an example of a split-valence basis. Another similar
commonly used type of basis set is doublezeta, in which there are two basis
functions per atomic orbital for all atomic shells.

There are several notable failures for split-valence bases. In the first place,
such bases tend to favor structures of high symmetry. For example, the am-
monia molecule NH, is predicted to have a trigonal structure which is too
close to planarity. This deficiency can reasonably be attributed to the fact
that, in a planar structure, the lone pair of electrons are assigned to a nitro-
gen orbital that is pure p-type, which cannot mix with higher angular mo-
mentum d-type functions, whereas, in a non- planar structure, the lone-pair
orbital is a sp mixture, for which further stabilization by d-mixing is possible.
A second deficiency in Hartree-Fock studies at the split-valence level is an ex-
aggeration of polarity, as measured by electric dipole moments. This can also
be attributed to restriction of lone-pair orbitals to pure p-type. The 3pr lone-
pair orbitals in HCI, for example, will probably be polarized towards hydro-
gen if mixing with dr basis is allowed, thereby reducing the predicted dipole
moment.

Considerable improvement is found in Hartree-Fock models if a single set
of uncontracted d-functions are added on each heavy (non-hydrogen) atom.
Such a basis is 6-31G*, or 6-31G(d) [10,11]. If a single set of uncontracted
p-functions is added on each hydrogen, the basis is denoted by 6-31G** or 6-
31G(d,p). These additional basis functions are termed polarization functions.
The full model with the 6-31G* basis is then described as HF/6-31G*. Other
important basis set extensions are the introduction of higher polarization
functions (as in 6-31G(2df,p) which contains two sets of d-functions and a set
of ffunctions on heavy atoms and a single set of p-functions on hydrogen)
and the use of diffuse functions, which are particularly important for anions
and electronic states. The latter are denoted by a ‘+’ as in 6-31+G(d).

The Hartree-Fock model HF/6-31G* has proved quite effective in the
description of molecular conformations. Its overall performance in this and
other regards has been documented elsewhere [12]. It is notably successful in
giving differences of different isomeric forms of organic molecules, where no
major changes of bond lengths are involved. Rotational potentials about
single bonds were successfully explored using this level of theory [13]. A par-
ticular example is the anomeric effect in carbohydrate chemistry, which was
not properly understood until the interaction of rotational potentials about
geminal G-O single bonds was investigated using HF /6-31G* theory [14].
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CORRELATED MODELS

The major fault implicit in all Hartree-Fock models is neglect of electron cor-
relation between the motions of electrons of antiparallel spin (aff correla-
tion). In the very early days of quantum chemistry, it was recognized that
neglect of correlation led to severe underestimation of bond dissociation
energies. This may be understood qualitatively by considering the process of
complete homolytic dissociation of a bond in which one electron ends up on
one center and one on the other. If the motion of the two electrons is uncor-
related, there will be a finite possibility of both electrons ending up on the
same center.

Neglect of aff electron correlation is implicit in the use of a single-deter-
minant wavefunction; improved wavefunctions necessarily involve the use of
many determinants. Most practical correlation procedures start with the
Hartree-Fock determinant and form linear combinations with other deter-
minants. It is particularly convenient to form additional determinants from
the unoccupied or virtual molecular orbitals, which are the higher eigen-
functions of the Fock operator. If a finite basis is used, with 2z electrons and
N cartesian basis functions, there will be N-n virtual orbitals, which may be oc-
cupied by a or 8 electrons.

At this point, it is convenient to change the notation somewhat and use
spinorbital basis functions which are products of the cartesian basis functions
and the a or B spin functions. Nis now the size of this spinorbital basis (twice
the number of cartesian basis functions) and z is the total number of elec-
trons. This notation enables us to use a common notation for both spin-re-
stricted and spin-unrestricted cases. If labels i,j,k,... are used for occupied
spinorbitals and labels a,b,¢,... for virtual, then single-determinant functions
using Fock orbitals may be classified as unsubstituted (i.e. Hartree-Fock) ¥,
singly substituted ¥4 doubly substituted ‘P‘;j’? and so forth. A general multi-
determinant wavefunction can then be written

v = a()\IIO + Z a?\I’f + Z a:-l;\I’;-lf + ... (12)

ia ijab
The a-coefficients can be determined by variation to minimize the calculated
energy. This is the method of configuration interaction (CI). If only singles are
mixed in, no energy lowering follows, since the occupied orbitals are already
optimized. The simplest effective form of CI allows for doubles only in (12).
This is usually denoted by CID. If singles are also included, the method is
CISD. These configuration interaction techniques were first implemented as
iterative schemes around 1970 and are still often used in practical computa-
tions. If all possible substitutions are included in the expansion (a large but
finite set if a finite basis set is used), the method is described as full configu-
ration or FCI. The FCI procedure, although desirable in principle, is usually

too costly to apply except for very small systems.
Although CID and CISD are well-defined models, given a standard basis
set, they suffer some serious disadvantages. These have to do with size-con-
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sistency. If a method such as CID is applied to a pair of completely separated
systems, the resulting energy is not the sum of the energies obtained by ap-
plying the same theory to the systems separately. If CID is applied to two
separated helium atoms, for example, the wavefunction does not allow for
simultaneous excitation of pairs in each atom, this being strictly a quadruple
excitation. This failure of CID and CISD models is likely to lead to poor
descriptions of large molecules and interacting systems.

A second general method of incorporating electron correlation is to treat
its effects by perturbation theory. Suppose we define a perturbed Hamilto-
nian as

H()\) = Fy + MH - Fy} (13)

where Fj is the Fock Hamiltonian (for which the single determinants in (12)
are exact eigenfunctions), then ¥, is the appropriate wavefunction if 4 = 0
and the exact(FCI) ¥is obtained if A = 1. The perturbation procedure used is
to expand the computed energy in powers of A,

E(\) = Eg+ AE; + MXEy + N*E3 + ... (14)

cut the series off at some level and then put A = 1. This perturbation method
was first introduced by Moeller and Plesset [15] and is often denoted by MPn
if terminated at order n. The MP1 energy (I, + E,) is identical to the Hartree-
Fock value. MP2 is the simplest practical perturbative procedure for electron
correlation and incorporates only effects of double substitutions. At third or-
der, MP3 also involves only double substitutions. At the fourth order level,
MP4 includes a description of the (indirect) effects of singles, the leading
contributions of triples and some treatment of certain quadruple substitu-
tions.

Moeller-Plesset theory is size-consistent if the computations are carried out
completely at any given order. Difficulties are that the terms become alge-
braically complicated at higher orders and also are increasingly costly to ap-
ply. In fact, Hartree-Fock theory (with no integral approximations) scales as
N4, MP2 as N MP3 as N% and MP4 as N’. The triple contributions in the
MP4 energy are the most expensive and generally limit the applicability of
Moeller-Plesset theory to this level. The MP2,MP3 and MP4 models were
implemented by several groups in the 1970s and incorporated into the
GAUSSIAN program [16,17].

A third general approach to correlation theory is the use of coupled cluster
methods, originally introduced into quantum chemistry by Cizek [18]. If the
configuration interaction CID wavefunction is written in the form

U= (14+T,)T (15)

where T, is an operator specifiying all double substitutions, with undetermin-
ed coefficients, then the corresponding coupled- cluster function (CCD) is
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¥ = exp(T2) Vo (16)

The CCD coefficients are determined, not by the variational method, but by
requiring zero projection of (/{ - E) ¥ onto ¥, and all ‘I’“b This method was
first implemented in 1978 [19-21]. Single substltutlons are incorporated by
using the operator exp(T) + T,) instead of exp(T}). This then defines a CCSD
model [22,23].

Unlike CISD, the CCSD method is size-consistent. The cost is of order NS,
as for CISD. Being non-variational, the resulting total energy is no longer an
upper bound for the exact result, but it is generally thought that the achieve-
ment of size-consistency is a matter of greater importance. Another, slightly
simpler, method is quadratic configuration denoted QCISD. This is also size-
consistent and can be regarded as an approximation intermediate between
CISD and CCSD.

The QCISD and CCSD methods take no account of the effects of triple sub-
stitutions, known to be important by studies at the MP4 level. A useful way to
take account of triples is to carry out an iterative QCISD or CCSD computa-
tion and the do a single computation of the effects of triples, using the single
and double amplitudes already found. These are the QCISD(T) and
CCSD(T) methods [24,25]. A third related method is the Brueckner-doubles
method, BD(T) [26], which alters the underlying occupied orbitals so that
ther is no singles mixing. All three of these methods are superior to MP4 in
that, when the energy is expanded in a Moeller-Plesset series, complete agree-
ment with a FCI expansion is obtained up to fourth order and many other
terms at higher order are also included [27]. In fact, the QCISD, CCSD and
BD methods have the further advantage of being completely correct for com-
posite two-electron systems such as a set of isolated helium atoms.

The cost of QCISD(T) or CCSD(T) scales as iterative NS, followed by a
single computation at N”. They represent the most sophisticated correlation
methods that are simple enough to be incorporated into general theoretical
models at the present time.

GENERAL ENERGY MODELS

In recent years, progress has been made in developing models which repro-
duce chemical energies to an accuracy approaching that achieved in good ex-
perimental work. The description of model features in the two previous sec-
tions indicates that two main features are involved, basis set and level of
correlation. The options available are usefully summarized in a two-dimen-
sional model chart as shown in Figure 1. The various correlation methods are
displayed horizontally in order of increasing sophistication from left to right.
Basis sets are displayed vertically, becoming more flexible from top to bottom.
At the far right, full configuration interaction (FCI) represents complete
solution within the finite space defined by the basis. At the bottom of the table, we
have (in principle but not in practice), the results of applying a complete
basis set. At the bottom right, application of a complete basis set with full con-
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figuration interaction corresponds to full solution of the non-relativistic
Schrédinger equation.

Basis HF | MP2 | MP3 | MP4 | QCI | FCI
STO-3G
6-31G
6-31G(d)
6-31+G(d)
6-311+G(d)
6-311+G(2df)

o0 S-eqn

Figure 1. General Model Table. (QCI refers to QCISD(T)).

Each empty box in this chart represents a well-defined size-consistent theo-
retical model as specified in Section 2. Clearly, we may test each level to find
how far we have to proceed from top-left to bottom-right for acceptable
agreement between theory and experiment. Eventually, adequate per-
formance will be achieved, if the underlying assumptions of quantum me-
chanics are correct.

In practice, full models usually have to make some compromises to achieve
a wide range of applicability. If the prediction of energies is most important,
a common practice is to carry out a geometry optimization (to an equili-
brium structure, for example) at some lower level of theory and then make a
final, more expensive, computation at a higher level. A useful notation for
this type of composite model is “model-1//model-2”, meaning single-point
calculations using model-1 at geometrical structures determined by model-2.

To illustrate these ideas, we give a partial description of the G3 model for
molecular energies, recently published [28]. This is a refinement of previous
energy models G1 and G2 which have been under development for more
than a decade [29,30]. The main computational steps are summarized in

Figure 2.
Basis HF | MP2 | MP4 | QCI
6-31G(d) freq | opt-1 2 3
6-31+G(d) 4 5
6-31G(2df,p) 6 7
G3large 8 ?

Figure 2. G3 Model Table. (QCI refers to QCISD(T)).
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In addition to the standard type of basis sets already described, a large basis
(G3large), which permits a flexible description of the whole space with inner
shells, is added. This basis is so large that only MP2 computations are
reasonably possible. Geometrical structures in the G3 model are determined
at the MP2/6-31G(d) level [31]. This is followed by a sequence of single-point
calculations which aim to estimate the results of a potential QCI/G3 large
energy, by assuming that effects of some of the improvement steps can be
treated additively. The actual formula used is:

P=2+(83-2)+(B-2)+(7-2)+(8-1)-(4-1)-(6-1) (17)

Earlier studies [32] had indicated that this kind of addititivy was reasonably
accurate. (It should be noted that all correlation computations except the full
MP2/G3 large are carried out in the “frozen core” approximation, only in-
teractions between valence electrons being treated).

An important contribution to total molecular energies is the zero-point vi-
brational energy. This is estimated in G3 theory by using harmonic frequen-
cies calculated at the HF/6-31G(d) level and then empirically scaled by a fac-
tor 0.8929 (HF theory being known to systemically overestimate the
magnitudes of frequencies [33]). In addition, a small correction is added for
the spin-orbit splitting in isolated atoms, obtained from experimental
data [34].

The computations as described up to this level give a reasonable account of
significant energy differences, such as dissociation energies and ionization
potentials. However, there is a significant systematic error, all binding ener-
gies being slightly too low. This can be reasonably interpreted as being due
mostly to the limitation in the basis sets being used. An accurate description
of the wavefunction cusp at the point where electrons of opposite spin come
to the same point in space requires basis sets involving high angular momen-
tum. Another reason is that, in molecules, the symmetry is lower than in
atoms and again neglect of the effects of higher angular momentum basis
functions will favor atomic energies relative to molecular.

These difficulties can be partly overcome by adding a small empirical cor-
rection, depending on the number of electrons and distinguishing between
atoms and molecules. The theory therefore becomes semi-empirical or, per-
haps “slightly empirical” since the parameters are small and their origin is
partly understood. This higher-level correction (HLC) is — Ang — B(n, — ny)
for molecules and — Cnﬂ - D(n, - nﬁ) for atoms (including atomic ions). n,
and ng are the numbers of o and f electrons, respectively, with n > ng This
completes the specification of a total G3 energy for any atom or molecule.

The parameters A,B,C,D are determined as part of the validation process.
This is carried out using a large set of 299 experimental energy differences,
involving molecules up to the size of benzene (42 electrons). These data in-
clude 148 heats of formation, derived from heats of atomization, 85 ioniza-
tion potentials, 58 electron affinities and 8 proton affinities. All of these ex-
perimental results are believed known to an accuracy of 1 kcal/mole or
better. Values of A,B,C,D are obtained by minimization of the mean absolute
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deviation between theory and experiment. These are (in millihartrees) 6.386,
2.977,6.219 and 1.185. The resulting mean deviation is 1.02 kcal/mole, close
to the target accuracy. The corresponding root-mean-square deviation, which
lays more emphasis on the poorer levels of agreement, is 1.45 kcal/mole.
However, nearly 88 % of the G3 deviations fall in the range, —2.0 to +2.0
kcal/mole.These results are significantly better than the prior Gl and G2
models, which use a smaller database of experimental facts.

The poorest results are worthy of note. Largest absolute deviations are 4.9
kcal/mole (C2F4) for heats of formation, 7.0 kcal/mole (BQF4) for ionization
potentials, 4.2 kcal/mole (NH) for electron affinities and 1.8 kcal/mole (PH,
and SH,) for proton affinities.

CONCLUSIONS

The current status of ab initio quantum chemical models is that some success

has been achieved in approaching experimental accuracy in predictive power.

The target of 1 kcal/mole is not far away for small molecules containing up to

about fifty electrons. However, the G3 model has a number of remaining de-

ficiencies that merit further attack.

1. The use of an empirical correction, which depends only on the number of
electrons, is undesirable. One consequence is that the model becomes dis-
continuous in some manner. For example, if a bond is broken, the elec-
tron count of paired versus unpaired electrons has to change at some
point, thereby providing a discontinuity in the potential surface. The same
criticism can be applied to the use of different parameters for atoms and
molecules. Some form of extrapolation is probably necessary, but it would
be much better if this could be carried out in a continuous and differenti-
able manner.

2. The G3 model is based on MP2/6-31G(d) geometries, which are known to
show considerable errors [31]. Some of the failures of the final energies
can be attributed to this; clearly a method which would reproduce known
bond lengths and angles more accurately would be preferable.

3. No account is taken of relativity in the G3 model. The total energy of a
molecule is known to depend significantly on relativistic corrections, par-
ticularly for inner-shell electrons. However, considerable cancellation of
errors occurs in processes such as bond dissociation. Nevertheless, some
inclusion of relativistic contributions to chemical processes is clearly desir-
able.

4. The applicability of the G3 model to large systems is presently limited by
the very expensive treatment of the triples terms, where computational
cost scales as the seventh power of the size of the system. The magnitude of
these terms is small, but not insignificant. A simpler treatment of three-
electron effects would be desirable.

Finally, some brief comment should be made about theoretical models
based on density functional theory (DFT). Such methods do not handle the
two-electron interactions explicitly but rather allow for them using properties
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of the one- electron density. This leads to lower cost and therefore a wider
range of applicability. Recent forms of DFT have also introduced a consider-
able amount of empirical parameterization, sometimes using the same set of
experimental data. At the present time, the principal limitation of DFT
models is that there is no clear route for convergence of methods to the cor-
rect answer, comparable to the ab initio chart shown in Figure 1. Interaction
between these two groups of theoretical chemists is a hopeful direction for
future progress.
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