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Abstract

We have studied the De Haas-van Alphen oscillations of uncon-
ventional superconductor for magnetic field well below H 9 . We find
that the amplitude of the oscillation is increased substantially relative
to that of an s-wave gap material.
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The De Haas-van Alphen Effect (dHvA) has been intensively studied since
it was first discovered in NbySn at fields well below H.o [1]. Later the effect
was seen in V3Si, Nb3Ge and borocarbides where w.r > 1, (see [2] for a
review). Most theoretical efforts [3-9] have focused on H.g — H < H9.
Here the oscillations are considered to be due to a non zero normal density
of states at the Fermi level which continued to exist below H.9 .

We study this effect in the field range in which the spacing d between
vortices is large compared to the ¢ size of the vortex cores. In addition d is
small compared to the penetration depth of §;. In this regime, the magnetic
field is essentially uniform and the gap A has nearly a constant value since
the area covered by the vortex cores, 7£2, is small compared to the area d?
between vortices.

The peak in the density of states of the s-wave superconductor at A leads
to an exponential reduction of the dHvA amplitude [7]. If the gap has lines
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of zeros along the Fermi surface one might expect that an increase of the
dHvA amplitude would occur [10]. For a d-wave superconductor the gap is
zero at some points on the Fermi surface. In a magnetic Field, this leads to
a finite density of states at the chemical potential [11].

We have studied the problem in two situations. For lines of zeros, we find
that the inverse Dingle temperature is reduced from A to Afy/d leading to
an exponentially enhanced amplitude. For point zeros, a topologic property
excludes level crossing at the chemical potential and therefore a small dHvA

amplitude.
In the above field range the gap is given by
A(r) = Ae™®) (1)
The super currents outside the vortex cores are
] = _i =2 — ﬁ. = ___E_ =2
ir) = —=6.* (A - 5-V9) = -=67°Q 2)

The following equations result from the topological singularity of the phase
where the gap goes to zero.

VxQ=B—¢oZ«5(r—r,~), (3)

B—§]AB =g ) 6(r—r).

For a square lattice [r; = d(n, m)]

_ %o etk _ 27
5= 2 Y e (k= Faw). @
It follows from (2) and (4) that
B = ¢od™?, |Q|~ ¢o/d, AB~ B(d/6)? (5)

where B is the average field and AB its spatial fluctuation. We consider a

two dimensional Fermi surface.
The oscillatory part of the magnetization M is given by

M= —%Tr {T ; Gu(iwn)} (6)
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Spur denotes the trace over all states, including spin of the quantity Gi:1(2)

of the matrix
vy [ G(z)  F(z)
6= () et ) 0

@ satisfies the Gor’kov equation

z—(ﬁ—,u) A Ay
( " _Z_(ﬁ_ﬂ))c«z)—l ®)

Here, the spatial dependence of the phase ¢(r) has been removed by a gauge
transformation. Nevertheless, the gap A = A(p) may depend on the direc-
tion of p along the Fermi surface.

For simplicity we consider a cylindrical Fermi surface. The Hamiltonians
in (8) are given by

i = 2—17; (p -ZA(r)>2 (9)

The magnetic field outside the cores and the part of A(r) [or bfQ(r) respon-
sible for the periodic variations are given by (3) and (4), with the average
field given by B = V x Ag. Thus, we have

A(r) = Ao(r) + Q(r) (10)
and employ the Landau gauge A, = —By. Since Q is small we retain only
terms first order in Q

LSRN 1 e 2 e
B A= (o= ZAo(r)) £ Svr- Q) (11)
From (5) it follows that
l(evr/c)Q| ~vr/d < A; (d> &) (12)

In the Landau gauge p, is conserved, as in (8) since the gap couples p,
and —p,. Thus we have

~

2 Loy, 2 ¢
H H ~ om (px + py) * e (PeQz + Py @y) (13)
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where p,, p,, are the kinetic momentum operators [p, py| = ieB/c. We will
carry out calculations in the momentum representations so

Aoz = ~iB(d/dp,) (14)

The unperturbed Hamiltonian @ = 0 in (13) has eigenvalues E,, = w.(n+3)
with real eigenfunctions which we use in calculating the trace in (6). In (13),
the terms linear in () and the gap terms lead to nondiagonal terms between
free electron eigenstates for the G matrix of the form

Z AnnFlig, Z ANNGNE (15)
N’ N’

if A(p) is anisotropic.
For weak coupling A(p) depends only on the direction of p along the
Fermi surface. For example, for d-wave pairing A o p2 — p? so that

A(p) = Agcos2p (16)
= Ao(1 —2p,/pF) (17)

Since the only nonzero matrix elements of p, are

(Py)NN-1 = (By)n-1,5v =/ NeB/2c. (18)

one has
1
[A(p)]N,N:i:Z = §A0 (19)

The broken gap symmetry ensures that the diagonal elements are zero. Since
N =~ p%/2mw, > 1 one has for arbitrary gap symmetry

Ann = AN-n (20)

Then, (8) becomes

[z —we (N +3) + 4] 8no A . _
%,: ( —Apnt [—z — W, (N+ %) + ,Lt] 6N’,0 GN—N’,N(Z)

= (i)N,N (8’)



It is convenient to write
p=wNo+ 1 (21)

where Ny is the integer part of p/w, then one may rewrite (8’) in the new
representation

@)=Y e fn, fo= % /_ ™ f()dy (22)

n

with n = NV — Ny. Therefore one finds
A ’ 1 “/\(‘P) )
G(z, o, - S
( ‘1090) Z)\:z—E,\(U,\(QO)
®(ui(¥"), vi(¢)) (23)

From (21) we have the periodicity f(¢ +27) = f(¢) as boundary conditions.
The matrix G can be written in terms of the eigenfunctions [ux(¢), va(¢)] as

) N 1 ux(p)
G(z,0,¢") = ;ﬁ ( uA() >
B3, v3() (24)

E, is the eigenvalue relative to the chemical potential. u and v satisfy

E —iwei + i) u(p) + Alp)o(p)

25
E +iwegs — i) v(e) + Alp)u(ep) )

0
0

The degeneracy of each state per spin is the same as for free electrons in the

field B
VeBdp,/(27)%c, (26)

were V is the volume. Eqn. (6) may be written as
= =) ua(e)n(Ey) (67)
A

The sum runs over all values of E\. The spin energy is small compared to
other energies in the problem.



It is convenient to remove ji by
(u,v) — e " (Flwede (g 5) (267)

and use functions y and z

Then, the problem reduces to Schrédinger’s equation
E*y = —wly" +[A%p) — weA(9)ly (28)
L,
7= =zl + Alp)y] (29)

These describe the motion of the quasiparticle along the Fermi surface. In the
case of a d-wave gap, the particle is confined to four potential wells formed

by A%(¢) around the points ¢ = § + kZ. The low energy part (E < A) of
the spectrum has two branches

E, = +24/w.Agn n=0,1,... (30)

When compared to the Q terms of (11), (29) is not applicable at too low
energy E, because (w.Ag)'/? is small compared to the @ terms in (11)

(d/vr)(welo)/? ~ (préo)™/* < 1 (31)

To include the @) terms into (22) and (24) we employ a quasi-classical method
developed in [13]. The equation can be obtained from (22) and (24) by the
substitution

E=E+h(p)=E+ (e/c)vr- Q(r) (32)

The motion of ¢ is given by the classical motion of an electron on a circular
orbit with Larmour radius r; = vp/w,

I — ro + (—rp cosw.t,rr sinw,t) (33)

and vp =7, ¢ = w.t. Having solved for the motion in the periodic potentials
A(p) and h(y), the Green’s function must be averaged over all trajectories.

Physically, h(yp) represents the interaction of the quasiparticle with the
currents as the electron moves around the circle of radius r; with Fermi
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velocity vp. The characteristic frequency of the motion through the vortex
lattice is vr/d > w.. These rapid oscillations while small compared to the
gap will smear the spectrum (29). These effects occur with the change of ¢

of order ép ~ d/r; < 1.

By applying Poisson’s summation formula to (6’) taking into account
the narrow region about the Fermi surface contributing to the dHvA effect
[A] = | = No| < Ny, after integration by parts one finds

o= gt (28] g ot ()]

/_ :o e”iﬂd—dj usln(E5)] d}” (34)

The two terms arising from the differentiation represent oscillations due to
level crossings at the Fermi surface

+oo — _
= / e¥™ N uy |26(E5)dX (33")
or the effect of the variation of the eigenfunction

:>/ 27rzk/\ d )d)\ (33”)

To apply this scheme to the two situations discussed above we first treat
a line of zeros of the gap with the field direction such that the extremal orbit
lies on it. Since the gap is zero the electron wave function is of the form

exp(£iS(p)) S(p) = / [E+ k(o (35)

From periodicity, the eigenvalue problem becomes
3 1 a / ! ’
2= Sen) = [ [+ h(e)]de (3¢)

e Jo .

By comparing (33) and (33’), one finds

M) = M2 (o0 2 [T hra) (36)
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The average is taken over all orbits. By combining (3), (31) and (32), the
exponent may be expressed as an integral over orbit area

1 27T

o Mede=Sga-a-

(1/240) / / [B—%Z«S(r—r,-):l ds (37)

Thus the exponent in (35) measures the fluctuations in the number of fluxes
encircled by the electron orbits n,. For a periodic vortex lattice (36) is
evaluated with a Gaussian distribution for n, with a mean value i, given by

f, = (2nrpd)/d* = 27xry/d (38)
For the Dingle factor exp[—2rem/er B] one finds

1/7 ~ Ao(éo/d) (39)

For an s-wave gap 1/7 = A, so that the dHvA amplitude is enhanced expo-
nentially by the factor &y/d.

For the case of a d-wave gap, as we have stated (29) is not accurate for
small n due to the vortex currents. Nevertheless, the structure of E, shows
that in contrast to the normal state where levels move through the chemical
potential here levels move symmetrically away from the Fermi surface, indi-
cating a small dHvA amplitude in this case. The existence of levels in the
vicinity of £ = 0 is a topological property for a soliton like problem [14] at
each point ¢ = T + k% where A(p) changes sign.

In conclusion we have presented a method for treating electron motion in
a superconductor in the presence of a field B < He¢,. For a line of zeros, the
dHvA amplitude is strongly enhanced relative to an s-wave gap. For point
zeros, the effect is expected to be weak. This paper is based on the work
of L.P. Gor’kov and J.R. Schrieffer (15). This work was supported by the
NHMFL through NSF grant DMR 0084173 and the State of Florida.
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