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General characteristics of radiations emitted by
systems moving with super-light velocities with some
applications to plasma physics

Nobel Lecture, December 11, 1958

The mechanism of radiation of light by a system moving with a super-light
velocily is a very simple one and common to the radiation at corresponding
conditions of all kinds of waves - electromagnetic as well as sound waves,
waves on the surface of water, etc.

Consider a system which in principle is able to emit the radiation in ques-
tion - e.g. an electrically charged particle in the case of light, a projectile or
an airplane in the case of sound, etc. As long as the velocity of this system
as a whole is smaller than the velocity of propagation of waves in the sur-
rounding medium, the radiation can be produced only by some oscillatory
motion of the system or of some of ils parts - e.g. by the oscillation of an
electron in an atom or by the revolutions of the propellers of a plane. The
frequency of the radiation emitted is evidently determined by the frequency
of the oscillations in question. To be more exact, for the radiation to be pos-
sible the motion has not necessarily to be a periodic one, but it has to be
non-uniform™ (i.e. its velocity should not be constant in time).

But when a velocity of the system becomes greater than that of the waves
in question, quite a new mechanism of radiation is introduced, by means
of which even systems possessing a constant velocity radiate. Let ¢’(w)
denote the velocity of propagation in the surrounding medium of waves,
possessing the frequency ®. Then as a rule the radiation of a system moving
in the medium with a constant velocity v, embraces all the frequencies which
satisfy the fundamental condition

> ’(w) (1)

* About an exception fo this rule - the so-called transition radiation - see V. L. Ginz-

burg and I. Frank' (1945).
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Fig. 1.

This radiation is characteristically a very directional one - waves of a given
frequency ® are emitted only under a definite angle to the direction of
motion of the system, this angle being determined by the relation

cos@——c (w)

—— (2)

To prove these fundamental relations one has only to take account of the
fact that at all velocities, whether small or large, the field of a uniformly
moving system must be stationary with respect to this system. If the system
radiates, it means that in its field at least one free wave is present (a free
wave of a frequency ®is by definition propagated in the medium with the
characteristic phase velocity ¢’(w) to any distance, however far from the
source of the wave). Let O and O (Fig. 1) be the positions of the uniformly
moving system at two consecutive moments ¢ = o and ¢ = 1. The phase of
the wave radiated by the system must be stationary with respect to the
system. It means, that if AO is that front of the wave* which at the moment

* The fronts of the wave are conical, due to the cylindrical symmetry; AOB is the
projection on the plane of drawing of such a cone.
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t=0 passes through the system at O, then this front, being propagated in
the medium with the velocity ¢(w), will permanently keep up with the
system, and in particular will at the moment £ =T occupy such a position
AQ, as to pass through O". Now the direction # of propagation of a free
wave is perpendicular to its front, therefore the triangle OCO’ is a rectan-
gular one and we easily obtain from it the fundamental relation (2).

Since the value of a cosine cannot exceed unity, Eq. (1) follows directly
from (2).

All these general properties of the radiation in question were for a very
long time well known in aerodynamics. The air waves emitted at supersonic
velocities are called Mach waves. The emission of these waves sets in when
the velocity of a projectile or of a plane begins to exceed the velocity of
sound in the air. Emitting waves means losing energy and these losses are
so large that they constitute the main source of resistance to the flight of
a supersonic plane.

That is why in order to cross the sound barrier, i.e. to achieve super-
sonic velocities in aviation, it was necessary lo increase very substantially the
power of the engines of a plane.

We perceive the Mach waves radialed by a projectile as its familiar hissing
or roaring. That is why, having understood the quite similar mechanism of
the Vavilov-Cerenkov radiation of light by fast electrons, we have nick-
named it « the singing electrons ».

I should perhaps explain that we in the USSR use the name « Vavilov-Ce-
renkov radiation » instead of just « Cerenkov radiation » in order to empha-
size the decisive role of the late Prof. S. Vavilov in the discovery of this
radiation.

You see that the mechanism of this radiation is extremely simple. The
phenomenon could have been easily predicted on the basis of classical electro-
dynamics many decades before its actual discovery. Why then was this dis-
covery so much delayed? I think that we have here an instructive example
of a situation not uncommon in science, the progress of which is often
hampered by an uncritical application of inherently sound physical prin-
ciples to phenomena, lying outside of the range of validity of these prin-
ciples.

For many decades all young physicists were taught that light (and electro-
magnetic waves in general) can be produced only by non-uniform motions
of electric charges. When proving this theorem one has - whether explicitly
or implicitly - to make use of the fact, that super-light velocities are forbidden
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by the theory of relativity (according to this theory no material body can
ever even attain the velocity of light). Still, for a very long time the theorem
was considered to have an unrestricted validity.

So much so, that I. Frank and I, even after having worked out a mathe-
matically correct theory of Vavilov-Cerenkov radiation, tried in some at
present incomprehensible way to reconcile it with the maxim about the in-
dispensibility of acceleration of charges. And only on the very next day
after our first talk on our theory in the Colloquium of our Institute we per-
ceived the simple truth: the limiting velocity for material bodies is the veloc-
ity of light in vacuo (denoted by c¢) whereas a charge, moving in a medium
with a constant velocity v, will radiate under the condition v > ¢’(®), the
quantity ¢(w) depending on the properties of the medium. If ¢'(0) < ¢,
then this condition may very well be realized without violating the theory
of relativity (¢’ < v < ¢).

When we first discussed our theory with Professor A. Joffe he pointed
out to us that A. Sommerfeld’as long ago as 1904 has published a paper,
dealing with the field of an electron possessing a constant velocity greater
than that of light, and has calculated the resistance to such a motion, due to
the radiation, emitted by the electron. But Sommerfeld considered only the
motion of an electron in vacuo. A year later the theory of relativity came
into existence, the motion considered by Sommerfeld was proved to be
impossible, Sommerfeld’s paper was completely forgotten and for the first
time in many years was referred to in our papers of the year 1937.

Let us return now to general characteristics of radiation emitted at super-
light velocities. In addition to those already indicated a new and very pecul-
iar one emerged in papers of 1. Frank’in 1943 and of V. L. Ginzburg and
I. Frank’of 1947.

Suppose that a system A, moving with a constant velocity v, radiates an
amount of energy ¢in a direction characterized by a unit vector #. The

balance of energy gives the relation
e+ AT +A4U=0 (3)

where A Tand A U denote respectively the increase, caused by the radia-
tion, of the kinetic energy T of the translational motion of the system A
and of the energy U of ils internal degrees of freedom. On the other hand,
if the radiated energy ¢ is propagated in the medium with the velocity ¢’
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in a definite direction n, it necessarily possesses a momentum* &/c’, directed
> .

along n. Therefore the conservation of momentum leads to the vector equa-

tion

() +dp=o @

where f) is the momentum of the system A. If the increase 4 ? ofﬁ is small
in relation to :;3, then, according to a general rule,

5-45=AT (s) |

Combining these simple and general relations one gets

AU=—¢|1

__vcos 0)

7

[

(6)

where @ is the angle between 7 and 7.

If the system A possesses no internal degrees of freedom (e.g. a point charge),
then U= o and Eq. (6) reduces to the already discussed Eq. (2). Thus
we have obtained this fundamental equation once again, but by a new way
of reasoning. On the other hand, if the system possesses internal (say, os-
cillatory) degrees of freedom, and if its velocity is small (11< ¢’), then,
usual, the internal energy U of the system decreases by an amount equal
to the amount ¢ of the energy radiated.

But at super-light velocities (v >¢") the value of the bracket in (6) may
become negative, so that radiation of energy by the system may be
companied by a positive increase (U > o) of its internal energy U.
example, an atom, being originally in the stable state, radiates light an
the same lime becomes excited! In such a case the energy both of then
tion and of the excitation is evidently borrowed from the kinetic energy
i.e. the self-excitation of a system is accompanied by a corresponding slow-
ing down of the motion of this system as a whole.

*For the case of electromagnetic radiation it was shown first by quantum-theoretical
reasoning (Ginzburg, 1940) and then by means of classical electrodynamics (Marx and
Gyorgyi’, 1955) that g/c’ (¢" being the phase velocity) is in fact equal to the total
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The relation (6) emerged in discussion of optical problems bul it is of a
quite general nature and it may turn out to be useful to apply it in aero-
dynamics (just as Mach’s aerodynamical relations (1) and (2) turned out to
be useful in optics).

Certainly, a correct calculation of a supersonic motion will automatically
take in account everything, including the possible self-excitation of some par-
ticular modes of vibrations of a supersonic plane. However, such calcula-
tions are necessarily extremely complicated, so that the relation (6) may
prove to be useful in giving an insight in the general mechanism of some
of the phenomena which become possible at supersonic velocities. On the
other hand, Eq. (6) takes in account only the radiative damping of oscilla-
tions, whereas in the case of mechanical vibrations of a plane this kind of
damping is under ordinary conditions quite negligible in comparison with
the damping caused by the internal friction in the vibrating materials. In
short, we must consider it an open question whether the phenomena in-
dicated may be of any importance in the complicated problem of a super-
sonic flight.

Let us now consider as an example some applications of the general the-
ory to a special field, namely to plasma physics.

In a preparatory way we begin with some remarks on the mechanism of
energy losses, experienced by fast charged particles travelling through mat-
ter. Vavilov-Cerenkov’s radiation accounts only for a part - and usually a
very small part - of these losses, which are largely due to the ionization and
excitation of the medium traversed by the particles. However the math-
ematical treatment, used by Frank and myself to calculate the radiation loss-
es, proved to be useful for the general problem also and was extended in
1940 by Fermi’ so as to cover the total energy loss of a charged particle,
with the exception of the losses caused by head-on collisions of the particle
with atoms of the medium. The losses of the later kind must be calculated
separately. The main difference between Fermi’s work and ours is that we
assumed the medium traversed by the particle to be transparent, whereas
Fermi took in account not only the polarization of the medium by the
electrical field of the particle, as we did, but also the absorption of electro-
magnetic waves in it. Fermi has shown, that the screening of the field of the
particle, which is caused by the polarization of the medium, and which was
not taken in account in previous work on this subject, very considerably
reduces the energy losses of very fast particles.

We will not review here the very extensive work on the subject, in which
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Fermi’s theory was further elaborated and extended. But to obtain some in-
sight into the underlying mechanism we will consider in some detail the
processes taking place in a plasma (e.g. a highly ionized gas), which for our
purposes may be considered as the simplest of all media. I have myself not
done any work on this subject, so that I will report on the work of others,
mentioning by name the authors only of relatively new papers, without ex-
plicit references to classical works such as e.g. by N. Bohr.

Energy losses of a charged particle traversing plasma can be divided in
two parts. Imagine a cylinder of a radius equal to the Debye’s radius D =
(#T/4 7 Ne? )i, the axis of the cylinder coinciding with the path of the par-
ticle. The interaction of the particle considered with plasma particles lying
inside the cylinder must be treated microscopically; resulling energy loss-
es will be referred to as those due to close collisions. But the interaction of
the particle considered with the plasma lying outside the cylinder can be
treated macroscopically; resulting energy losses will be designated as cohe-
rent ones. Under ordinary conditions losses of both kinds are of about equal
importance, but in a very hot and rarefied plasma, so important in thermo-
nuclear research, the cross section for the direct Coulomb interaction of
charged particles decreases and the coherent losses eventually become pre-
ponderant.

Since the index of refraction # of a plasma is for all frequencies less than 1,
so that the velocity of light ¢" = ¢/n in plasma is greater than its velocity ¢
in vacuo, it may appear that the Vavilov-Cerenkov effect should be absent
in plasma. But that is not the case. Firstly, only the velocity ¢'(®) of trans-
verse electromagnetlic waves in a plasma exceeds c af all frequencies, but not
so the velocities of plasma waves proper. Those are longitudinal waves, in
which oppositely charged plasma particles oscillate in opposite directions,
the restoring force being provided by the resulting electric field. Second-
ly, in a magnetic plasma, i.e. in a plasma exposed to an external mag-
netic field, both kinds of waves become interconnected, so that no sharp
distinction can be drawn between the transverse and the longitudinal
waves. As a resull the index of refraction of light varies with the directions
of its propagalion and polarization, and in a certain range of these directions
becomes greater than 1, so that the Vavilov-Cerenkov effect becomes
possible.

Let us first consider coherent energy losses of a charged particle moving in
a plasma in the absence of external magnetic fields. Almost all these coherent
losses are due to the excitation of longitudinal plasma waves by a mechanism
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equivalent to the mechanism of Vavilov-Cerenkov radiation of light. To be
more exact the phase velocity of plasma waves is equal to

’ woz
¢ = A/31/7-2 + B

where k= 27'5//1 is the wave vector,

Wo == (4.‘.7! N€2>-§

m

the so-called plasma frequency and v is the mean thermal velocity of
plasma electrons. As long as the velocity v of the particle considered is less
anV gvT, the necessary condition v > ¢’ for the emission of plasma waves
cannot be satisfied; and therefore practically all energy losses experienced
by the particle are due to close collisions. But when v exceeds \/—3— v the con-
dition v > ¢ is satisfied for a certain range of wavelengths 1 = 2z/k and
the coherent losses are switched in*.
Allow me now to make a digression and to turn your attention from
plasma to solid metals. At high enough frequencies the valence electrons in
a metal can be considered as free and thus as forming together with the atom
cores a kind of plasma. The plasma frequency w, is proportional to the
square root of the density of plasma electrons. Since this density is in a metal
far greater than in an ordinary plasma, the frequency of plasma waves in
metals is rather high, of the order of ho~10¢€V.

In analogy to the case of an ordinary plasma we have to expect that a
fast electron traversing a metal foil will experience, besides other kinds of
energy losses, also losses due to the excitation of plasma waves by the
mechanism just described. Now that is in fact the case. It is well known
that fast electrons traversing a thin metal foil often experience in it large dis-
crete energy losses of the order of 10 eV. I refer you to a comprehensive
article by D. Pines’ (1956), where it is shown that an elementary theory
of the plasma excitation in a metal by a fast charged particle, very similar
to the theory outlined above for the case of an ordinary plasma, fits the
experimental facts relating to discrete energy losses in metals so well,
that, in words of the author: "What puzzles exist have to do with why the
*The fact that long plasma waves are very strongly absorbed in plasma itself has no
influence on the phenomenon, since the condition of radiation ¢ (w) < is satisfied

only for short enough plasma waves (1< D), the damping coefficient of which is
small in comparison with their frequency.
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agreement is so good, rather than with explaining existing disagreements. »

Turning again to ordinary plasma I would like to emphasize, that the ab-
sorplion of plasma waves in the plasma itself is conditioned by a reverse
Vavilov-Cerenkov effect.

Ordinarily the necessary condition for a marked absorption of waves is
the existence of a resonance between the frequency of the wave and a fre-
quency of the absorbing system, e.g. an atom. Thus a free electron, which
in distinction to a bound electron possesses no eigen-frequency, performs
in the field of a wave periodic oscillations, alternatively acquiring and again
losing kinetic energy and thus producing no substantial absorption.

But there exists also another non-resonant mechanism of absorption. If
the velocity v of a free electron is greater than that of the wave (v > (),
then the projection of the velocity of the electron on the direction of prop-
agation of the wave v cos may become equal to the velocity of the wave:

vecos =¢’ (7)
In this case the electron so to say rides on the crest of the wave, being ex-
posed to a force, the direction of which does not alter in time, and thus
continually absorbs energy from the wave until its velocity increases so
much, that it drops out of phase with the wave.

Such is the mechanism of absorption of plasma*; the condition (7), which
sorts out those plasma electrons which take part in the process of absorption,
is identical with the fundamental condition (2) for radiation**.

The damping coefficient y of plasma waves was first calculated by Landau”
in 1946. Changing the notations used by Landau one can present the cx-
ponential term in Landau’s formula in the following form

2
7~ exp(— 1) (8)

* In principle this mechanism of absorption was indicated as long ago as 1949 by

Bohm and Gross". The work of these authors is intimately connected with earlier work
of A. Vlasov. A detailed and a very lucid mathematical treatment of this subject was
presented by R. Z. Sagdeev and V. D. Shafranov at the Geneva Atoms for Peace
Conference last September.
** Radiation takes place if there is say one electron of velocity 7 or a cluster of such
electrons, the dimensions of the cluster being small in comparison with the length of
the wave radiated. If however electrons of a given velocity » are distributed continu-
ously in space, then they do not radiate, since their wave-fields are destroyed by
mutual interference. But they do absorb.
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where # = wo/k. In the range of validity of Landau’s formula wo/k equals
the velocity ¢’ of the wave in question.

Therefore according to (8) the damping of a plasma wave is proportional
to the density of plasma electrons, possessing according to Maxwell’s law
a velocily u, equal lo the velocity of the wave. This is in exact correspondence
to the mechanism of absorption just indicated.

In a recent paper on the mechanism of the sporadic solar radio-emission
Ginzburg and Zhelesniakov"” (1958) applied and extended the theory out-
lined above to a new and very interesting domain of physics, the foundations
of which were laid in Sweden by Professor Alfvén. In particular they have
shown that the known instability of a beam of charged particles traversing
plasma, is from a quantum theoretical point of view due to the negative
absorption of plasma waves by the beam of particles (the induced radiation
of waves by the beam particles prevailing over the true absorption).

Before finishing 1 would like to mention one problem, which plays a
rather important role in the present fascinating world-wide effort to harness
thermonuclear reactions for peaceful uses - the problem how to heat the
plasma. First stages of heating can be easily achieved by exciting an electric
current in the plasma. However, the cross-section for Coulomb collisions of
charged particles decreases inversely to the fourth power of their relative
velocities and in a hot and rarefied plasma these collisions become so rare as
to become negligible. Evidently heating by electric currents thus becomes
impracticable: only a very small part of the energy of the ordered motion
of plasma electrons, excited by an external field, is under these conditions
converted into Joule heat.

Many different methods to achieve further heating of the plasma are now
being discussed, e.g. the so-called magnetic pumping. I wish to make some
remarks on only two such methods, intimately connected with our sub-
ject.

First, the heating by a beam of fast charged particles, injected into plasma
from outside, is in principle feasible even if the plasma is hot and rarefied.
Although in such a plasma energy losses of fast particles due to close colli-
sions become negligible, coherent energy losses, described earlier, are in-
dependent of the collision cross-section and become all-important.

It is necessary to stress in this connection two points. First, the heating
can in principle be achieved by a beam of fast charged particles travelling
not in the plasma itself, but outside it and parallel to its surface. In fact, as we
have seen, coherent energy losses are due to the emission of plasma waves
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by the fast particles. Now, those of these waves, the length of which is large
in comparison with the distance of the beam from the surface of the plasma,
will be excited by an external beam much to the same degree as by a beam
traversing plasma. The possibilities offered by an external beam were first
pointed out by L. Mandelstam for the case of the ordinary Vavilov-Cerenkov
radiation. Later Ginzburg”(1947) proposed a method of generating micro-
radiowaves by means of fast particles travelling along the surface of an ap-
propriate dielectric or in a tunnel bored through the dielectric.

The second point is that if the beam consists of a succession of separate
clusters of charged particles, then all the particles of each cluster will generate
coherently those of the plasma waves, the length of which is large in com-
parison with the dimensions of the clusters. Therefore the intensity of these
waves will be proportional not to the number of particles in a cluster, but
to the square of this number. Evidently this offers the possibility of enhancing
the radiation and the heating effect of a beam very considerably.

Let us now turn to another possible method of heating. Morozov”
(1958) has recently calculated the excitation of so-called magneto-acoustic
waves in a magnetic plasma (i.e. a plasma exposed to a constant external
magnetic field) by an electric ring-current, moving with a sufficient veloc-
ity in a direction perpendicular to the plane of the ring-current. The current
may move within the plasma - one can imagine a plasma ring, bearing a
current, the ring being injected from outside into the plasma to be heated.
Otherwise the current in question may be flowing outside of the plasma on
the surface of the vessel containing it, such an external current being similar
to an external beam of particles discussed above.

Generation of waves by a moving current is a special case of Vavilov-
Cerenkov radiation. Morozov has shown that under certain conditions the
absorption in plasma of magneto-acoustic waves produced in this way may
in principle lead to a very considerable heating of the plasma. Of course the
velocity of the current must exceed the velocity of the waves in question.
One of the causes of high heating efficiency of a current is the coherence of
the waves generated by its different elements. In this respect there exists an
analogy between a current and a cluster of charged particles, the radiation
of a current being proportional to the square of its strength.

There is another possible way of utilizing the Vavilov-Cerenkov radia-
tion of a current. 1t is well known that currents excited in plasma, which in
virtue of the pinch-effect are usually concentrated in a thin thread, are highly
unstable. Therefore in practical applications it is often all-important to sta-
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bilize them. If the walls of the vessel containing plasma are conducting, then
a displacement of the plasma current towards these walls will induce Fou-
cault currents in them, and these currents will tend to repel the plasma cur-
rent backwards. Methods of stabilization based on this phenomenon were
independently proposed by physicists in different countries and were used in
a number of thermonuclear experiments, but have proved to be not very
satisfactory. Morozov and Soloviev*(1958) have recently proposed to con-
struct the walls of vessels containing plasma not of conducting materials
but of such materials, in which velocities of propagatlion of electromagnetic
waves in an appropriate range of frequencies are as small as possible. If a
current, flowing in plasma along the surface of such a wall, is displaced
towards this surface with a velocity exceeding the velocity of propagation
in the wall of waves of a certain frequency, then these waves will be radiated
by the current into the wall. The recoil force acting on the current will tend
to repel it from the wall and thus to stabilize the current.

I wish to emphasize that 1 have no definite opinion on possible advantages
and disadvantages of methods of heating and of stabilization mentioned or
on their technical feasibility. They were selected by me only as examples of
possible applications of the general theory, which I have outlined in the be-
ginning. The applications mentioned were necessarily confined to a very
limited domain of physics.

I can only hope to have to some extent succeeded to convey to you the
impression that there are further possibilities to apply this theory to new
and interesting physical problems, and that work done on these lines may
be useful in solving these problems or at least getting an insight into the
general physical mechanism of some of the relevant phenomena.
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