Climate Change: The Ultimate Challenge for Economics

William D. Nordhaus, Yale University

Nobel Lecture in Economic Sciences
Stockholm University
December 8, 2018
Climate change looms over our future

Francisco de Goya, El Coloso, Copyright ©Museo Nacional del Prado
The circular flow of global warming science, impacts, and policy

Economic growth leads to CO₂ emissions (driving, heating and cooking, air travel, …)

Rising CO₂ concentrations and other forces lead to climate change (temperature, precipitation, sea-level rise, …)

Climate-change policies reduce emissions (cap-and-trade, carbon taxes, regulations, …)

Climate change imposes ecological and economic impacts (lower corn yields, coastal flooding, ocean acidification, …)
The mathematics of the DICE model

(1) \[\max_{c(t)} W = \max_{c(t)} \left[\int_0^\infty U[c(t)] e^{-\rho t} dt \right] \]

subject to

(2) \[c(t) = M[y(t); z(t); \alpha; \varepsilon(t)] \]
Alternative policies

- Business as usual (minimal policies)
- Cost-benefit optimum (two damage functions)
- Limit temperature increase (to $1\frac{1}{2}$, 2, $2\frac{1}{2}$ °C) with hard cap
- Limit temperature increase (to $1\frac{1}{2}$, 2, $2\frac{1}{2}$ °C) over 100-year or 200-year averaging period
Temperature trajectories in different policies

![Graph showing temperature trajectories in different policies](image-url)
Abatement costs & damages, alternative policies

![Graph showing present value costs, damages (trillions)]

- **Future damages**
- **Present abatement**

Legend:
- Base
- Optimal
- \(T \leq 2.0\) (200 yr)
- \(T \leq 2.0\) (100 yr)
- \(T \leq 2.0\)
- \(T \leq 1.5\) (100 yr)
Social cost of carbon, different policies and actual

<table>
<thead>
<tr>
<th>Year</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td>36</td>
</tr>
<tr>
<td>Optimal (alt dam)</td>
<td>91</td>
</tr>
<tr>
<td>T ≤ 2.0 (100 yr avg)</td>
<td>130</td>
</tr>
<tr>
<td>T ≤ 1.5 (100 yr avg)</td>
<td>236</td>
</tr>
<tr>
<td>T ≤ 2.0</td>
<td>225</td>
</tr>
<tr>
<td>T ≤ 1.5</td>
<td>Not feasible</td>
</tr>
<tr>
<td>ACTUAL Price</td>
<td>3</td>
</tr>
</tbody>
</table>

SCC = societal damage from an additional ton of CO2 emissions.
Annual growth CO2: 1.8% per year
Annual growth CO2/GDP: -1.5% per year
Emissions trajectories in different policies

[Graph showing emissions trajectories for different policies from 1980 to 2050, including Base, Optimal, T 2.0 (200 yr av), T 1.5 (200 yr av), T 2.0 (100 yr av), and T 2.0 (No av).]
The Free Rider Problem

• Many public-goods issues are hampered by “free-riding.”
• Those who do nothing ride free, while those who undertake costly reductions pay dearly.
• The present rides free, while the future pays.
• Free rider problem is particularly severe for climate change.
• What to do? One proposal is to establish a Climate Club
International Treaties as “Clubs”

Clubs are agreements where:

- Have economies of scale or public goods
- Members pay dues
- Can exclude non-members (avoid free riders)

Important successful international clubs:

- Multinational trade negotiations (1930s to today)
- NATO
- European Union
A Climate Club to Overcome Free-Riding

• A climate club has incentives to overcome free-riding.
 – Club members “pay dues” through costly abatement.
 – Non-members are penalized through tariffs.

• Proposal here involves a regime with two features:
 – Target carbon price, say $50 per ton CO₂
 – Penalty tariff on non-participants, say 3% uniform

• So the “dues” to the club are expensive abatement, while the “penalties” for non-membership are tariffs on exports to the club region.
C-DICE model: Simulation of different penalty tariffs

Tariff rate (left to right):
- 0%
- 1%
- 2%
- 3%
- 4%
- 5%
- 6%
- 7%
- 8%
- 9%
- 10%

Number participating regions (0f 15)

Target carbon price ($/tCO2) = $50

No (zero) participants at 0% tariff
Four steps for today

1. People must understand the gravity of global warming. This involves intensive research and resisting false and tendentious reasoning.

2. Nations must raise the price of \(\text{CO}_2 \) and other greenhouse-gas emissions.

3. Policies must be global and not just national or local. The best hope for effective coordination is a climate club.

4. Rapid technological change in the energy sector is essential.