

# DESIGNING LITHIUM-ION BATTERY CATHODES

JOHN B. GOODENOUGH

Presented by
Arumugam Manthiram
Director, Texas Materials Institute
The University of Texas at Austin



### LITHIUM-ION BATTERY

A DISCOVERY
THAT CHANGED
THE WORLD









#### **EARLY WORK**

1950-1980



- Magnetic materials for first RAM memory
- Cooperative atomic orbital ordering
- Rules for sign of magnetic interactions
- Solid sodium-ion electrolyte: NASICON

#### THE LITHIUM-ION BATTERY

HOW IT WORKS





## WHAT FACTORS

## DETERMINE CHOICES FOR NEW BATTERY CHEMISTRY?



#### **ENERGY DENSITY**

**User Time = (Cell Voltage) x (Amount of Lithium ions Stored)** 



### **INSERTING LITHIUM**

HOW THE CHEMISTRY WORKS



Titanium Sulfide TiS<sub>2</sub>

Lithium Titanium Sulfide LiTiS<sub>2</sub>

#### **ENERGY DENSITY**

FROM SULFIDE TO AN OXIDE





1980: LAYERED OXIDE

Citation: Mizushima, Jones, Wiseman, Goodenough — Materials Research Bulletin 15, 783 (1980)



Lithium Cobalt Oxide LiCoO<sub>2</sub>

Lithium-deficient Cobalt Oxide  $Li_{0.5}CoO_2$ 

1983: SPINEL OXIDE

Citation: Thackeray, David, Bruce, Goodenough — Materials Research Bulletin 18, 461 (1983)



#### 1987-89: POLYANION OXIDE

Citation: Manthiram, Goodenough — Journal of Solid State Chemistry **71**, 349 (1987) Manthiram, Goodenough — Journal of Power Sources **26**, 403 (1989)



Iron Sulfate Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>

Lithium Iron Sulfate  $Li_2Fe_2(SO_4)_3$ 

#### 1997: POLYANION (OLIVINE) OXIDE

Citation: Padhi, Nanjundaswamy, Goodenough — Journal of the Electrochemical Society **144,** 1188 (1997)



### **KEY FINDINGS**

#### AND HISTORICAL SIGNIFICANCE

- A fundamental study of the properties of transitionmetal oxides led to the identification of oxide cathodes
- Pushed boundaries at the intersection of solid-state chemistry and physics
- The three classes of materials discovered still remain the only viable cathodes — and the basis for future development
  - Layered oxide
  - Spinel oxide
  - Polyanion oxide

#### **MOVING FORWARD**



- Liberating society from fossil fuels
  - Harvesting electric power from solar and wind energy
  - Electricity storage as chemical energy is the key
  - Affordable, safe battery technologies

## The University of Texas at Austin Cockrell School of Engineering